

 Navigation

 	
 index

 	
 next |

 	Intro to Python; Fall 2016 0.1 documentation

Heroes Academy: Introduction to Python, Fall 2016

Course Description

Computing technology has integrated itself into every aspect of our lives. In this course, we will tour through one of the most popular programming languages: Python. Python is used at companies like Google, Microsoft, Facebook, Amazon, and Apple to accomplish a huge variety of tasks. Its versatility, similarity to the English language, and large community support make it one of the best programming languages for learning.

This course will cover the basics of problem solving with Python. We will cover standard data types, loops, conditional statements, functions, and classes. Students will not only learn the basics of syntax, but also how to solve problems with programming. The course will prepare students to move forward to more complex topics at Heroes Academy, or dive into self-taught studies at home.

How to Browse This Document

This document is intended to be a companion to the Introduction to Python course taught at Heroes Academy. For more information about Heroes Academy, please visit it here [http://www.njgifted.org/course-view?course=beginning-computer-programming-with-python].

Below and to the left you will find the sections of this document. Each week there will be exercises to complete at home, as well as supplementary materials for further understanding and learning. Python has a rich suite of tools for problem solving and carrying out computational tasks. We will cover the fundamentals without delving too deeply into the more sophisticated features that require extra study.

Getting Started

	Course Information
	What is HEROES Academy?

	When does this course meet?

	How do I register for this course?

	What are the expectations of this course?

	How do I contact you?

	Installing Python
	Python Distribution

	An Editor

	Installing Minecraft
	README
	Minecraft

	Python 3 Distribution

	Java

	Minecraft Python API and Minecraft Spigot server

	Installing PyGame
	Where to get it

	Common Issues

	General Resources
	Online Books

	Debugging Help

	Interactive Coding Websites

	Online Code Environments

Course Contents

	[Week 1] Hello World
	Summary

	Review

	Homework

	Lecture Slides

	[Week 2]: Strings and Input
	Summary

	In-Class and Homework Exercises

	Review

	Lecture Slides

	Trinkets

	[Week 3]: Booleans, If-Elif-Else, For
	Summary

	Homework

	Review

	Lecture Slides

	Trinkets

	Extra Turtle Challenge: Specific Coordinates

	[Week 4]: Turtles and For Loops
	Refresher

	In class Exercises

	Take home exercises

	Review

	Lecture Slides

	[Week 5]: Collections and Loops
	Refresher

	Exercises

	Review

	Lecture Slides

	[Week 6]: Basic Functions
	Exercises

	Review

	Lecture Slides

	[Week 7] Advanced collections and functions
	Refresher

	Projects

	Lecture Slides

	[Week 8] Classes and Projects
	Overview

	Cookbooks

	Review

	Lecture Slides

	[Week 9] Project Discussions
	Presentation Link

Tutorials

	Tutorials

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

Course Information

What is HEROES Academy?

HEROES Academy is an intellectually stimulating environment where students’ personal growth is maximized by accelerated learning and critical thinking. Our students enjoy the opportunity to study advanced topics in classrooms that move at an accelerated pace.

When does this course meet?

The Intro to Python course will meet from 11:20 to 1:20 starting October 2nd.

How do I register for this course?

The list of courses are listed on the HEROES website [http://www.njgifted.org/course-list-view].
If you have any questions about the process, you
can check out the HEROES Frequently Asked Questions [http://www.njgifted.org/page?name=faqs].

What are the expectations of this course?

I expect that...

	You will ask questions when you do not get something.

	You will keep up with the work.

	You will fail fast:

	Failing is good

	We learn when we fail

	We only find bugs when code fails; we rarely hunt for bugs when code is working

	You will not copy and paste code from the internet

	You are only cheating yourself.

	It won’t bother me if you do it, but you will not learn the material.

	You will try the homework at least once and email me with solutions or questions by Wednesday

How do I contact you?

You can reach me anytime at teacher@njgifted.org

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

Installing Python

Python Distribution

There are several ways to get Python. My recommended way is the Anaconda [https://www.continuum.io/downloads] distribution. It includes both Python and a bunch of other things packaged with it that make it super useful.

Instructions for downloading Anaconda Python:

	Click the link above.

	If you use a Mac, look at the section titled “Anaconda for OS X,” and click on “MAC OS X 64-BIT GRAPHICAL INSTALLER” under the “Python 3.5” section.

	If you use a Windows computer, in the section titled “Anaconda for Windows,” click either “WINDOWS 64-BIT GRAPHICAL INSTALLER” or “WINDOWS 32-BIT GRAPHICAL INSTALLER” under the “Python 3.5” section.

	On most Windows machines, you can tell if it’s a 64-bit or 32-bit system by right-clicking on the Windows logo and selecting “System.” The line labeled “System Type” should say either 64-bit or 32-bit. If you’re having trouble with this, simply email me and I’ll help you out!

	Once you click the button, an installer file will be downloaded to your computer. When it finishes downloading, run the installer file.

	Follow along with the prompts, and select “Register Anaconda as my default Python 3.5” if you’re using the Windows installer.

	At the end of the installation wizard, you’re done! Anaconda, and Python, are installed.

An Editor

There are many good editors and IDEs (Integrated Development Environments). As you’re just beginning to learn how to use Python, it’s a good idea to use a simplistic, lightweight development environment. PyCharm [https://www.jetbrains.com/pycharm/download/] and Sublime Text [https://sublimetext.com/] are both good choices for starting out. They have nice, clean appearances, highlight your code to make it easier to read, and are easy to jump in and start coding right away.

Instructions for downloading PyCharm:

	Click the link above.

	Click “Download” under the “Community” section.

	An installer file will be downloaded to your computer. When it finishes downloading, run the installer file.

	Follow along with the installer, and select “add .py extension” if you see the option

	At the end of the installation wizard, you’re done! PyCharm is now installed.

Other than those two, GitHub has an editor that is very comparable to Sublime Text. It is called Atom [https://atom.io/].

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

Installing Minecraft

README

The software used for this course is provided as companion to the book
Learn to Program with Minecraft [http://nostarchpress.com/pythonwithminecraft].
It is recommended that the students purchase the book.

To get things running, you will need:

	Minecraft

	Python 3

	Java

	Minecraft Python API

	The Minecraft server

Minecraft

Visit the Minecraft homepage [http://www.minecraft.net] to download. If you do not
have an account, please email me and I will make sure you are provided with one.

Python 3 Distribution

Python 3 is the distribution we will be using.
If you have Python 2, it is recommended that you uninstall Python 2 and install Python 3.
If you don’t, there will be some inconsitencies that could be devestatingly confusing.
Also, Python 3 has a lot of really cool, new features that aren’t in Python 2.

There are several ways to get Python. I personally recommend the
Anaconda [https://www.continuum.io/downloads] distribution.
It has a bunch of things packaged with it above and beyond Python that make it useful.
Anaconda comes with the Spyder editor. It is a decent editor, but I would recommend:

	PyCharm [https://www.jetbrains.com/pycharm/download/].
	If you download PyCharm, make sure you download the Community Edition.

	Sublime Text [https://sublimetext.com/]
	This is my personal favorite. It is lightweight and has many extensions.

	However, it does not run or debug Python files as easily as PyCharm.

	Atom [https://atom.io/]
	Very similar to Sublime

Java

You should have both Minecraft and Python installed at this point.
You need to set Java up in order to run the server.

If you are on Windows:

	Click the Start Menu (or press the Windows key)

	Type “cmd” to find the program called cmd. Open this.

	This is the command prompt. It is also called a terminal or console.

	Type java -version at the prompt

	If you see an output describing the version of Java, you already have it and can continue to the next section.

	If you don’t, or it can’t find java, then go to here: http://www.java.com/en/download/

	Click Free Java Download. Then click Agree and Start

	When it is finished downloading, install this.

	IMPORTANT: If it asks you to install extra things or set Yahoo! as your homepage, click no.

	This is the annoying feature about installed Java.

	Retry steps 1-3. If they succeed, move on. If they don’t, email me.

Minecraft Python API and Minecraft Spigot server

An API is an interface. We will use it as a library that lets us communicate
with the Minecraft server. We will not be able to edit the server in any way, but
instead, just tell it instructions.

We will be using the Spigot server because it allows for the API to talk to it.
Standard Minecraft does not.

To install both of these:

	Go to https://www.nostarch.com/pythonwithminecraft/

	Download the MinecraftTools.zip for your operating system.

	When it has finished downloading, you can open it.

	a zip file is known as a compressed file

	it allows you to compress a set of files to make them smaller for downloading

	all operating systems let you open these files

	Important Although it looks like you have a folder, the contents of the Zip file are not a folder

	Create a folder somewhere convenient and name it MinecraftTools.

	Inside the Zip file, you can click “Extract all” or similar button.

	Extract it to your MinecraftTools folder.

	Go to the folder and double click the Install_API file.

	Now, you can run the server.

	There is a file called Start_Server. Running this will start the server.

	If you have any trouble, email me.

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

Installing PyGame

PyGame is a library that creates graphical interfaces for games.
There is sometimes some difficultly in installing it, so below I have listed information to help you out.

Where to get it

There are a couple of good directions on the internet:

	The main pygame repository [https://bitbucket.org/pygame/pygame/downloads]

	The programarcadegames website [http://programarcadegames.com/index.php?chapter=foreword&lang=en]

	Pygame Simplifed [http://webprojects.eecs.qmul.ac.uk/fa303/pgs/install.html#installpygame]

Common Issues

	
	I installed Pygame, but when I use python, it says it can’t find it.

	
	this is usually caused by having two versions of python installed

	Email me and we will talk through the situation. It usually involves a couple things that need to be check to verify this is the situation.

	
	When installing Pygame, at the part where it says “Select Python Installation”, it is showing no python installaion

	
	this is can be an issue sometimes with the way Python was installed.

	I have had this happen to me with Anaconda

	Try the following:

In the Anaconda menu, choose Tools, then "open command prompt".

If you don't have Anaconda and are using windows, open the Run window (hit Windows key and R at the same time). Then, type in "cmd" and hit enter.

If you don't have Anaconda and are using a mac, mac has an application called "terminal". Open this, it is the same as the windows cmd window.

Inside the cmd/terminal window, type "pip install pygame" and hit enter.

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

General Resources

Online Books

	How to think like a Computer Scientist [http://www.openbookproject.net/thinkcs/python/english3e/index.html]

	How to think like a Computer Scientist: Interactive Edition [http://interactivepython.org/runestone/static/thinkcspy/toc.html]

	A collection of links to Python guides [https://wiki.python.org/moin/BeginnersGuide/Programmers]

Debugging Help

	16 common Python runtime errors for Beginners [http://inventwithpython.com/blog/2012/07/09/16-common-python-runtime-errors/]

Interactive Coding Websites

These are some excellent websites that let you code and compete online:

	Hackerrank [https://www.hackerrank.com/]

	Codewars [http://www.codewars.com/]

	CodinGame [https://www.codingame.com/start]

Online Code Environments

There are plenty of website out there that will let you test out Python code online. Trinkets [https://trinket.io/] is a great resource that we’ll use a lot during this course.

C9 is a more powerful environment which students can also use if they’re looking for a more advanced experience.

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

[Week 1] Hello World

Reminder: if you have any difficulty, email me at teacher@njgifted.org with questions!
Failing is good. Failing silently is bad.

Summary

Our first lesson!

I will post a summary here after the class.

Review

Values are data - things like 25, “Hello”, and 3.14159. Variables are just containers that hold that data. Each variable you use in code gets its own name - it’s like an envelope that you label so you remember what’s inside of it. You make variables in Python using the “assignment” operator, which is the equals sign (=). Here are some examples:

x = 5
my_text = "Hello, World!"
num3 = 3333.333
text_number = "500"

(Remember - you can tell if a variable is a String if it’s surrounded by ‘’ or “”)

There are 4 main types of data in Python:

	Integers (numbers with no decimal place)

	Floats (numbers with a decimal place)

	Strings (text, surrounded by quotes)

	Booleans (True or False)

We learned three commands:

	print(), which prints out whatever you put in the parentheses

	type(), which evaluates the type (integer, float, string, boolean) of whatever is in the parentheses

	len(), which evaluates the length of whatever is in the parentheses. For example, len(“Hello!”) = 6

We also previewed some of Week 2’s material, mostly just the following simple mathematical operators:

“+” addition, 3 + 5 = 8

“-” subtraction, 10.1 - 6 = 4.1

“*” multiplication, 2 * 2 = 4

“/” division, 11 / 2 = 5.5

There are also two special math operators. The first is “//”, or floor division. This acts like remainder division, but leaves off the remainder. So, 13 // 5 = 2, and 4 // 100 = 0. And “%” is modulo, which acts like remainder division but only says the remainder. So, 5 % 3 = 2, 100 % 50 = 0, 7 % 10 = 7, etc.

We went over these toward the end of class, so we’ll review them at the beginning of Week 2.

Homework

	Get Python installed and working on your home computer. Instructions on how to do so are located in the “Installing Python” section on the left.

	Open up the interactive shell (iPython console or iPython QT console), play around like we did in class!

	Use Python like a calculator! Write down the numbers or equation you use and why.

	Make at least one mistake that creates an error. Write it down how you created it. If you can, explain why it happened.

Lecture Slides

 [Week 2]: Strings and Input

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

[Week 2]: Strings and Input

Summary

The extra steps were:
1. use input to get a word from the console
2. use a for loop and words.split(" ") to loop over words in a sentence and do pig latin to each.

word = input("give me a word for piglatin: ")
do your pig latin stuff here
sentence = input("give me a sentence for piglatin: ")
print("Split sentence: {}".format(sentence.split(" ")))
for word in sentence.split(" "):
 ## do your pig latin stuff here
 print(word)

After we finished up that exercise, we worked through the shortcut math operations.
Then, we talked about formatting strings. You saw the curly bracket ({}) easy way.
You should check the review out below.

We rushed through some of the input and type conversion stuff. So, you should definitely try inputting numbers and then converting them for a math equation.

In-Class and Homework Exercises

All of the code is on the Github Repository [https://github.com/Heroes-Academy/Intro-to-Python-Summer-2016].

	Go through formulas.py and do those problems.

	
	Read through harder_formulas.py, string_practice.py, and build_in_practice.py

	
	try to do these problems. If you can’t, let me know and I’ll go over them

	
	Break the code in some way.

	
	You should be writing down the error, what it says, and why it happened.

	You should also send me code by tomorrow with how you made the error

	
	Do something fun with turtles.

	
	The one I created in class is here [https://trinket.io/python/c9c47d373c].

	Or if you scroll to the Trinkets section at bottom of the page, I’ve embedded it there.

See below for more details.

Also, here are some extra resources for the turtles (their commands and such):

	Notes on using turtle [http://www.eg.bucknell.edu/~hyde/Python3/TurtleDirections.html]

	Turtle Examples [https://michael0x2a.com/blog/turtle-examples]

	Week 3 of our Data Structures Course [http://ds.cs.njgifted.org/en/latest/week3.html]

Review

After this class, you should know or practice all of these topics:

	Inserting a new line in a String

	Concatenating (combining) Strings

	Repeating a String

	Indexing Strings

	Slicing Strings

	Formatting Strings

	Math Shortcuts

	Converting between types

	User Input

Inserting a new line in a String

You can use \n in the middle of a String to make a new line. For example, the String “Hello, \n World!” will print like this:

Hello,
World!

You can also use \t in the middle of a String to make an indent. “Hello, \t World!” will print like this:

Hello, World!

Concatenating Strings

You can combine Strings using the + sign.

Example:

str1 = “Hello”
str2 = “World!”
str3 = str1 + str2
print(str3)

This will print out “HelloWorld!”

Repeating a String

You can repeat Strings using the * sign

Example:

str1 = “bogdan”
str2 = str1 * 3
print(str2)

This will print out “bogdanbogdanbogan”

Indexing Strings

You can get one character from a String using square brackets, []. Inside the square brackets, put the index of the character you want to get. In a String, the first character starts at index 0, and goes up from there.

For example: If str = “computer”, then:

	str[0] is “c”

	str[1] is “o”

	str[2] is “m”

...and so on.

You can put -1 in the brackets to get the last letter of a String too.

	str[-1] is “r”

	str[-2] is “e”

etc.

Remember, every character gets its own index – even numbers, symbols, and spaces!

Slicing Strings

By getting a slice of a String, you can get multiple characters all at once. Use square brackets for this too. Inside the brackets, you first put the starting index, then a colon, and then the ending index.

For example:

str = “fantastic!”
print(str[0:3])

This will give you “fan”. It starts at 0, and stops just before the character at position 3. So, you get the letters at positions 0, 1, and 2.

Some more examples:

	str[1:4] is “ant”

	str[0:2] is “fa”

	str[3:7] is “tast”

...and so on. If you leave out the first number, the slice will start at the beginning of the String.

	For example: str[:5] is “fanta”

If you leave out the second number, the slice will go until the end of the String.

	For example: str[2:] is “ntastic!”

Formatting Strings

Formatting strings is necessary if you want to be able to print variables to the shell.

There are a couple different ways of formatting strings. I will cover all three here.

1. With string concatenation

animal = "bunny"
adjective = "evil"
noun = "the ruler of the world"

our_sentence = "The "+adjective+" "+animal+" wants to be "+noun"."

print(our_sentence)

2. With string formatting

animal = "bunny"
adjective = "evil"
noun = "the ruler of the world"

our_sentence = "The {} {} wants to be {}.".format(adjective, animal, noun)

print(our_sentence)

The second way is much preferred because you can have fine grained control over formatting options:

a_number = 3432.34234324233462
print("Not formatted well: {}".format(a_number))
print("Formatted: {:0.3f}".format(a_nubmer))

a_string = "euclid the bunny"
print("without formatting options: {}".format(a_string))
print("with formatting options to right align: {:>50} [end]".format(a_string))
print("with formatting options to center align: {:^50} [end]".format(a_string))

The stuff inside the curly brackets specifies the options. The options start with a colon.
Then, if it’s a number, you can specify the number of decimal points to have. You need the ‘f’ for the float.

For strings, ‘>’ aligns to the right, ‘<’ aligns to the left, and ‘^’ aligns to the center.
The number directly after that is how wide it should be. It will add spaces to adjust.

Math shortcuts

Let’s say you’re writing code and have a variable x = 5. What if you want to increase x by 10?
You could do this:

x = x + 10

Python gives you a shortcut way to write this:

x += 10

x += 10 is a way of telling Python, “just increase x by 10.” You can also do x -= 10 to decrease x by 10.

You can use this shortcut with the following math signs:

	+=

	-=

	*=

	**=

	/=

	%=

Converting between types

In Python, variables all have a type. If you do my_number = 5.1234, then the variable my_number has type Float (because it’s a number with a decimal point).

In Python, sometimes you can convert variables to be a different type. For example, remember that there are two kinds of numbers in Python: int (no decimal) and float (with a decimal). You can convert from one to the other:

my_float = 5.1234
other_number = int(my_float)
print(other_number)

This will print out 5. When you convert a float to an int, Python simply chops off the decimal part.

Or:

my_int = 10
some_float = float(my_int)
print(my_int)

This will print out 10.0 (Python just adds a decimal point when you convert an int to a float).

If you have a String that is just a number, for example, var1 = “100”, you can convert that to an int or float!

var2 = int(var1)
var3 = float(var1)

One note of caution: if you have a String variable like my_string_variable = “50.3”, you can’t directly convert it to an Int (because it has a decimal point). If you want it to be an Int, you’d have to first convert it to a Float, and then to an Int.

Finally, you can convert just about anything to a String.

my_num = 505.606
some_text = str(my_num)
print(some_text)

This will print out “505.606” – a String!

User Input

The last thing we learned in Week 2 was how to get user input. This is where you ask the user to type in a value, and can use that value in your code! You do it with the input() function. Inside the parentheses, you put a String, which is the message that the user will see.

Here’s a quick example. Type the following code into the Python shell:

user_name = input(“Please type in your name: ”)

If you type that code in and press enter, it will display the message, “Please type in your name: ” and wait for a response. Type something in (any name will do) and press enter. Then type the following code:

print(user_name)

It should print back out whatever you typed in! The name you typed is saved in the variable user_name, so you can treat it like any normal String.

Maybe you want to print out how many letters are in your name:

name_length = len(user_name)
print(name_length)

…and so on.

Quick note: whenever you get user input, the computer assumes it’s a String. So in the example above, user_name is a String. Even if the user types in a number, you get it as a String first. You can convert it to a number using the int() or float() functions we learned.

Lecture Slides

 [Week 3]: Booleans, If-Elif-Else, For

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

[Week 3]: Booleans, If-Elif-Else, For

Summary

We reviewed how to use strings and input. We specifically covered indexing and slicing. Make sure you remember these!

We then covered boolean variables and how to combine them.
You can use boolean variables in if-elif-else statements, which can be used to create conditional code.

As bonus material, we covered turtles and for loops. I will cover both more in depth next week.

Homework

	Do one of the turtle design options:

	Draw a face

	Draw your initials

	Draw something creative

	Use inputs to make a menu!

	a basic menu with a joke

	a two-level menu with two jokes!

	Break things!

	Write down what happened and what the error was!

Review

Booleans

Booleans are variables that can have a value of True or False.
You can set Boolean variables in code with something like x = True, or you can use comparison operators.

These are the comparison operators we discussed:

	< less than

	> greater than

	<= less than or equal to

	>= greater than or equal to

	== equal to (remember, in Python, “equal to” uses two equals signs, because one equals sign is just used for making a variable)

	!= not equal to

Comparison operators compare the values of two different variables, and will evaluate to either True or False.
For example, 5 > 3 will evaluate to True, but 10 == 9 will evaluate to False.
You can use these to make Boolean variables as well.

Booleans can also be combined using the and and or keywords.
If x and y are Booleans, the expression x and y will only be True if both x and y are True.
x or y will only be True if at least one of them is True.
And of course, not x will just be the opposite of x.

We practiced evaluating Booleans using cards and complex conditions (suite == hearts and not number <= 5).

If Statements

if statements are comprised of two ingredients: a condition (which must evaluate or be a boolean), and some code.
Python checks if the condition is True; if it is, the code will be executed.
But if the condition is False, Python will just ignore the code and move on.

If statements kind of resemble a paragraph - the condition goes at the top, and the accompanying code is all indented by 4 spaces.

if <condition>:
 do some code
 do some more code
back to normal code

The computer knows when the if statement paragraph ends because the indentation stops.
That’s the only way it will know!

If-Elif-Else

More complex types of if Statements: if-else, and if-elif-else structures.

It helps to think of the three of them like this:

	An if statement gives the computer one option: if <condition> is True, then do something. That’s all.

	An if-else statement gives the computer two options: if <condition> is True, then do something. If <condition> is False, do some other thing!

	An if-elif-else statement gives the computer several options, where you can say “Check all of these conditions until you find one that’s True.”

Each kind of statement is indented in the same way - with 4 spaces. Here’s an example of each:

If Statement:

if x == 5:
 print("x is 5!")

If-Else Statement:

if x == "Penny":
 print("Your name is Penny!")
else:
 print("Looks like your name isn't Penny!")

If-Elif-Else Statement:

if age == 50:
 print("You're really old!")
elif age == 20:
 print("You're kind of young!")
elif age == 10:
 print("You're a kid!")
else:
 print("I wonder how old you are?")

You can put in however many “elif” portions you want. The computer will just go through each of the conditions, one after another, until it finds one that’s True.
Then, it will skip the rest of the paragraph. And if none of the conditions are True, it will do whatever is written under the “else” section.

For Loops

The last thing we learned about is the for loop. for loops are great - they use indented lines to form a ‘paragraph’ (kind of like If statements!) and let you run the code in that paragraph over and over again, as many times as you want!

Say you wanted to print someone’s name 10 times (kind of a ridiculous example). The loop would look like this:

for i in range(10):
 print("Cinder")

That’s it! If you execute this code in Python (easier to type it into PyCharm than the shell), it will print out “Cinder” ten times in a row.

Breaking it down:

	for is a special keyword - when Python sees it, it knows we’ll be repeating some code

	i is just a variable, just like x or username

	range(10) is the list of all numbers from 0 to 9

In the above For loop, Python will repeated the indented code 10 times, and each time, i will take a new value.

	First time through: i is 0

	Second time through: i is 1

	Third time through: i is 2

etc.

So you can also do something like this:

for i in range(5):
 print(i)

This will print 0, 1, 2, 3, and 4, because the code will execute 5 times, and each time, i has a different value!

For loops can be tricky to wrap your head around. The best thing to do is to use the above two examples, copy them into PyCharm, and verify that they work.
Then try changing the number in range(), and also change around what happens in the indented text.
The best way to practice new coding techniques is to try it yourself

Lecture Slides

 [Week 4]: Turtles and For Loops

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

[Week 4]: Turtles and For Loops

Turtles cheat sheet [https://github.com/Heroes-Academy/IntroPython_Fall2016/blob/master/code/week04/Turtles%20Cheat%20Sheet.pdf]

Refresher

Check out the new refresher page!

In class Exercises

Link!

Take home exercises

Link to exercises

Review

From Simple to Complex variables

There are two ideas you should combine in your head. The first is about simple variables.
Simple variables have a single type. For example, a simple variable can be an integer or a string.

The other idea you should combine is code robots.
We talked about code robots in class.
Code robots have a very simple design: take an input, give an output.

Combining these ideas, we can talk about complex variables.
Complex variables can have multiple simple variables inside them.
They can also be several code robots in one.

Turtles are just this! Turtles can have multiple variables, like color and shape.
They can also do multiple things. You can have it go forward or have it turn!

Summary of Turtles

Turtles are created from their factory.

import turtle
bob = turtle.Turtle()

Then, you can make it move and turn:

bob.forward(100)
bob.left(90)

There are many things you can do:

bob.shape('turtle') # change the shape
bob.stamp() # stamp the shape onto the board
x=100
y=100
bob.goto(x,y) # go to this position
bob.penup() # stop drawing when the turtle moves
bob.pendown() # start drawing again

Lecture Slides

 [Week 5]: Collections and Loops

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

[Week 5]: Collections and Loops

Refresher

See this page for the refresher!

Exercises

See this page for some exercises!

Bonus: Dictionary exercises!

Review

Collections

Collections are variable types that can hold more than one value - not just an int or a String, but a sequence of values. We learned about three types: Lists, Tuples, and Dictionaries.

Lists in Python are simply that - a linear, ordered bunch of values. Lists can have ints, Strings, booleans, etc., for their members. You can make an empty list like this:

grocery_list = list()

Or, you can make one like this:

grocery_list = []

Finally, you can make a list that already has items in it:

grocery_list = ["bread", "milk", "beans"]

You can get items from a list using the same syntax as indexing and slicing strings (see Week 02 for a refresher). For example, grocery_list[0] will return the String “bread”, and grocery_list[1:] will return [“milk”, “beans”]. Notice how when you return just one item, the type is whatever the item was - a String, int, etc. But if you get multiple elements, it’s just a shorter List.

	Reassign List items: grocery_list[1] = "bacon"

	Add an item to the end of a List: grocery_list.append("butter")

	Delete a particular item: del grocery_list[1]

	Get the length of a list: len(grocery_list)

Dictionaries in Python work like real-world dictionaries; instead of organizing items by number, each item gets a “key”, and you can look up items by their “key.” Dictionaries are great for when you want to store information and don’t care about how it’s ordered - you just want to be able to look up specific entries by name.

To make a blank dictionary and add items to it:

my_dict = {}
my_dict["first entry"] = "This is the first entry!"
my_dict["second entry"] = "This is the second entry!"

Then, print(my_dict["first entry"]) will print “This is the first entry!”

The values in a Dictionary can be Strings, Ints, Booleans, anything! The keys can be Strings, Ints, or Tuples.

Tuples in Python are very much like Lists. The main difference is that the items in a tuple can’t be changed once they’ve been set. Tuples are useful for when you have a set of values that you know won’t change, and don’t want to allow the program to change.

To make a Tuple:

num_tuple = (0, 1, 2)

If you try num_tuple[1] = 5, Python will complain.

While Loops

A while loop is another kind of loop - it works differently than a for loop. while loops have two parts: a <condition>, and a body of code. When Python reaches a while loop, it checks to see if <condition> is True. If it is, the code in the code body will be executed.

Once that’s finished, Python will again check <condition>. If it’s True, the code will execute again, and again, and again...This continues until <condition> is False. So be careful - a while loop can continue forever if <condition> never becomes False!

Syntax of a while loop:

x = 5
while x < 10:
 print("The loop is still going!")
print("Looks like the loop finished!")

The above is an example of an infinite loop. x never gets changed, so it’ll always be less than 10. The final line will never be reached!

Bonus

Finally, we learned a cool trick with for loops and Collections (list, dictionary, etc.) All of these are examples of iterables - objects in Python that you can loop over by taking the first item, and then the next, and the next, etc.

And you can use any iterable in a for loop - it doesn’t just have to be range(x)! Check out the following example:

grocery_list = ["olive oil", "eggs", "ham", "celery"]
for item in grocery_list:
 print("Remember to buy: ")
print("That's it!")

The above code will output:

Remember to buy: olive oil
Remember to buy: eggs
Remember to buy: ham
Remember to buy: celery
That's it!

Random

The random library lets you do randomized events. You must always start with importing it.

For example:

import random
num is short for number
num = random.random()

You can do random integers and random choices too:

import random
num = random.randint(0,10)

pet_names = ["euclid", "fido", "bob"]
selected_name = random.choice(pet_names)

With the random.randint(start,stop), the integer sampled is just like range: it will only go UP to the stop number. It will never include it.

Lecture Slides

 [Week 6]: Basic Functions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

[Week 6]: Basic Functions

Refresher

Week 6 Refresher

Exercises

	Functions, part 1

	Functions, part 2

	Functions, part 3

	Functions, part 4

Review

Will be posted after class.

Lecture Slides

 [Week 7] Advanced collections and functions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

[Week 7] Advanced collections and functions

I have written up a cookbook for you all to use in solving problems!
You can find it by clicking here

Refresher

At the start of class, you will be working on the refresher:
refresher link

Projects

When you finish exercises, and over the week, you should be working on your projects.
I have written a couple tutorials to assist you in accomplishing them:

	Minecraft Architect

	Interactive Stories

	Animation

Lecture Slides

 [Week 8] Classes and Projects

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

[Week 8] Classes and Projects

Overview

In this class, we will go over the basics of classes. You will be implementing a basic object (kind of like Door below!)

Then, you will work on your projects. If you have a project to propose, you will talk about that in front of the class.

You should work on your projects at home.

Exercise

Cookbooks

	
	Python Cookbook

	
	This has examples of most of Python’s syntax!

	
	Classes cookbook

	
	This has examples of the basics of classes!

Review

We may not have covered all of these topics in class, but they are here to cover all of the possible topics we could have covered.

self

Self is python’s way of solving the scope problem! You can access properties of an object from outside the object using dot notation on the variable.
While inside a function inside the object, python provides you with a variable that lets you access the rest of the object.

This is accessing the propers from OUTSIDE:

class Dog:
 name = 'default name'
 age = 0

fido = Dog()

print("1. Fido's name: ", fido.name)
fido.name = "Fido"

print("2. Fido's name: ", fido.name)

class Dog:
 name = 'default name'
 age = 0

 def speak(self):
 print("This is inside! My Name: {}".format(self.name))

fido = Dog()

fido.speak()
print("This is outside! Fido's name: ", fido.name)

fido.name = "Fido"

fido.speak()
print("This is outside! Fido's name: ", fido.name)

def __init__(self)

The __init__ function is one of Python’s special functions - this is indicated by the double underscore (__) on either side of the function name. init is a keyword (like print or if`) and Python already knows what it’s used for.

When you write your own class, sometimes it’s helpful to have a kind of setup function that runs whenever you make a new copy of the class. For example, if you write the Door class we’ve been using as an example, you might want the Door to print out “Hello!” the first time someone makes it. And, every new Door that gets made will also say “Hello!”

This is what the __init__ function is for: it’s a special function that runs once every time an object of that type (in our example, Door) is made.

So, for example:

class Door:
 def __init__(self):
 print("Hello!")

first_door = Door()
second_door = Door()

The code above will print out “Hello!” twice - once for first_door, and again for second_door.

That’s an example of an __init__ function that doesn’t take any arguments. Usually, this isn’t the case - because __init__ is a setup function, you want the user to provide certain information about the object when they make it.

Here’s an example:

class Door:
 def __init__(self, in_name, in_height):
 self.name = in_name
 self.height = in_height
 print("Hello! My name is " + self.name)

first_door = Door("Gerald", 10)
second_door = Door("Geraldina", 12)

In this code, when a Door object is created, it takes two arguments: the name, and the height. These arguments are then used for setting up the Door object (i.e., they set up the properties self.name and self.height)

Lecture Slides

 [Week 9] Project Discussions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

[Week 9] Project Discussions

This week will be looking at your projects to see how far you’ve come and what you have left.
You should have a working demo!

We will be discussing your final presentations today
and what information should be in it.
In addition to your final presentation,
you will be required to document your code
and write a 1 page summary about it.

You are going to be required to have the following:

	A presentation which you will give to your parents. I’ve included an example one at the bottom of the page to help you with the framework of it.

	
	A working demo, a screenshot of your demo, or a video/gif of your demo.

	
	If you do the working demo, you have to arrange with me before hand so it goes smoothly

	A 1-page paper which summarizes your project.

Your paper should...

	Describe the purpose of your project

	Outline the logic of your code

	Describe each section in your code

	Explain which python syntax you used and why

Your code should...

	Have docstring comments (the triple-quote strings) describing functions, classes, and sections of your code

	Be working!

Presentation Link

You will give a presentation to your parents when we meet again in 2 weeks.
You will have time at the beginning of class to finish things up, but your presentation
is due to me that Friday (December 16th).

Here is the presentation template:

 Tutorials

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

Tutorials

	Heroes Cookbook
	Numbers
	Integers

	Floats

	Basic math operations

	Advanced math operations

	Use the math library

	Strings
	Add two strings together

	Repeat a string

	Index into a string

	Slice a string

	String’s inner functions

	Built-in Functions

	Boolean algebra
	Create a literal boolean variable

	Create a boolean variable from comparisons

	Combine two boolean variables with ‘and’ and ‘or’

	If, elif, and else
	Use an if to test for something

	Create conditional logic

	Nest one if inside another if

	Lists
	Create an empty list

	Create a list with items

	Add onto a list

	Index into a list

	Slice a list into a new list

	Test if a value is inside a list

	Sets
	Create a set or convert a list to a set

	Add an item to a set

	Using sets to enforce uniqueness

	For Loops
	Write a for loop

	Use the for loop’s loop variable

	Use range inside a for loop

	Use a list inside a for loop

	Nest one for loop inside another for loop

	While Loops
	Use a comparison

	Use a boolean variable

	Loop forever

	Special Loop Commands
	Skip the rest of the current cycle in the loop

	Break out of the loop entirely

	Functions
	No arguments and returns nothing

	Takes one argument

	Returns a value

	Takes two arguments

	Takes keyword arguments

	Time module
	Using time.time() to count how long something takes

	Using time.sleep(n) to wait for n seconds

	Random Module
	Generate a random number between 0 and 1

	Generate a random number between two integers

	Select a random item from a list

	Classes Cookbook
	Defining a class

	Instantiating an object

	Writing a method

	Using the self variable

	Using the property decorator

	Inheriting properties and methods

	Using the classmethod decorator

	Cookbook
	Game Loop

	Drawing
	Using Rect to draw

	Bouncing off obstacles
	Basic collision detection with screen boundaries

	Changing direction based on screen boundary collision

	Colliding with another Rect

	Cookbook
	Game Loop

	Basic Sprites
	Basic Sprite

	Adding the drawing function to the basic sprite

	Moving a sprite

	Colliding with one other sprite

	Using Groups of sprites

	Colliding with many sprites

	Adding an image to your sprite

	Adding event handling to your sprite

	Making an animated sprite

	Basic Game Physics

	Handling Keyboard Input

	Scoreboards

	Menus

	Animation
	PyGame

	Game Loop

	Drawing Objects

	Keeping track of state

	The core elements of the game loop

	Where you should go from here

	Interactive Stories
	Flow charts and structure
	Ovals are start/end points

	Rectangles/Boxes are processing points

	Diamonds are decision points

	Other shapes

	Understanding State

	The Story Loop

	Breaking up your code

	More complex states

	Optional: Using functional programming

	Optional: Use classes to handle state

	Minecraft Architect Tutorial
	Information: User-Centric Positioning

	Information: Placing Blocks
	Single Blocks

	Multiple Blocks

	Technique: Layers

	Technique: Negative Space

	Technique: Block Collections

	Technique: Circles

	Data Analysis Tutorial
	More datasets

	Overview

	Getting the Data

	Using Pandas and Matplotlib
	Some example tutorials

	Some simple operations

	Seaborn

	Science
	Some terminology

	Questions you can ask

	Additional setup

	Turtle Artist

	Chatbot Tutorial
	Reflex-Response Agents
	Interace

	Brain

	Finite State Automata

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Heroes Cookbook

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Heroes Cookbook

This is a set of recipes that you should use while solving problems!

Numbers

Integers

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	# create an integer
x = 5

convert an integer string
x = str('5')

convert a float to an integer
note: don't depend on this for rounding, it rounds in weird ways
x = int(5.5)

convert a string of any number base
for example, binary
x = int('1010101', base=2)

Floats

	1
2
3
4
5
6
7
8

	# create a float
x = 5.5

convert a float string
x = float("5.5")

convert an integer to a float
x = float(5)

Basic math operations

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	x = 100

1. Add
x = x + 5
x += 5

2. Subtract
x = x - 5
x -= 5

3. Multiply
x = x * 5
x *= 5

4. Divide
x = x / 5
x /= 5

5. Power
x = x ** 2
x **= 2

Advanced math operations

	1
2
3
4
5
6
7
8

	# 1. Integer Division
x = x // 5
x //= 5

2. Modulo
x = 84
x = x % 5
x %= 5

Use the math library

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	import math

x = 10

pow is power, same as x ** 2
x = math.pow(x, 2)

ceil rounds up and floor rounds down
x = 5.5
y = math.ceil(x) # y is 6.0
z = math.floor(x) # z in 5.0

some other useful ones:
math.sqrt(x)
math.cos(x)
math.sin(x)
math.tan(x)

this will give you pi:
math.pi

Strings

Add two strings together

	1
2
3
4

	first_name = "euclid "
space = " "
last_name = "von rabbitstein"
full_name = first_name + space + last_name

Repeat a string

	1
2
3
4
5
6
7

	message = "Repeat me!"
repeated10 = message * 10

I like to use it for pretty printing code results
line = "-" * 12
print(" Title! ")
print(line)

Index into a string

	1
2
3
4
5

	first_name = "Euclid"
last_name = "Von Rabbitstein"
first_initial = first_name[0]
last_initial = last_name[0]
initials = first_initial + last_initial

Slice a string

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	# the syntax is
my_string[start:stop]
this includes the start position but goes UP TO the stop
you can leave either empty to go to the front or end

target = "door"
last_three = target[1:]
first_three = target[:3]
middle_two = target[1:3]

you can use negatives to slice off the end!
all_but_last = target[:-1]

pig_latin = target[1:] + target[0] + "ay"

String’s inner functions

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	full_name = "euclid von Rabbitstein"

all caps
full_name_uppered = full_name.upper()

all lower
full_name_lowered = full_name.lower()

use lower to make sure something is lower before you compare it
user_command = "Exit"
if user_command.lower() == "exit":
 print("now I can exit!")

first letter capitalized
full_name_capitalized = full_name.capitalize()

split into a list
full_name_list = full_name.split(" ")

strip off any extra spaces
test_string = " extra spaces everywhere "
stripped_string = test_string.strip()

replace things in a string
full_name_replaced = full_name.replace("von", "rabbiticus")

use replace to delete things from a string!
test_string = "annoying \t tabs in \t the string"
fixed_string = test_string.replace("\t","")

Built-in Functions

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	print("This prints to the console/terminal!")

notice the space at the end!
it helps so that what you type isn't right next to the ?
name = input("What is your name? ")

use input to get an integer
age = input("How old are you?")
but it's still a string!
convert it
age = int(age)

test the length of a list or string
name_length = len(name)

get the absolute value of a number
positive_number = abs(5 - 100)

get the max and min of two or more numbers
num1 = 10**3
num2 = 2**5
num3 = 100003
biggest_one = max(num1, num2, num3)
smallest_one = min(num1, num2, num3)
can do any number of variables here
max(num1, num2) works
and max(num1, num2, num3, num4)

max/min with a list
ages = [12, 15, 13, 10]
min_age = min(age)
max_age = max(age)

sum over the items in a list
more list stuff is below
ages = [12, 15, 13, 10]
sum_of_ages = sum(ages)
number_of_ages = len(ages)
average_age = sum_of_ages / number_of_ages

Boolean algebra

Create a literal boolean variable

	1
2

	literal_boolean = True
other_one = False

Create a boolean variable from comparisons

	1
2
3
4
5

	x = 9
y = 3
x_is_bigger = x > y # True
x_is_even = x % 2 == 0 # False
x_is_multiple_of_y = x % y == 0 # True

Combine two boolean variables with ‘and’ and ‘or’

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# example data
card_suit = "Hearts"
card_number = 7

save the results from comparisons!
card_is_hearts = card_suit == "Hearts"
card_is_diamond = card_suit == "Diamond"
card_is_big = card_number > 8

only 1 of them needs to be true
card_is_red = card_is_hearts or card_is_diamond

both need to be true
card_is_good = card_is_red and card_is_big

creates the opposite!
card_is_bad = not card_is_good

If, elif, and else

Use an if to test for something

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	power_level = 1000
min_power_level = 500
max_power_level = 1000

one thing is larger than another
if power_level > minimum_power_level:
 print("We have enough power!")

if power_level == max_power_level:
 print("You have max power!")

Create conditional logic

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	selected_option = 2

if selected_option == 1:
 print("Doing option 1")
elif selected_option == 2:
 print("Doing option 2")
elif selected_option == 3:
 print("doing option 3")
else:
 print("Doing the default option!")

Nest one if inside another if

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	name = "euclid"
animal = "bunny"

if animal == "bunny":
 if name == "euclid":
 print("Euclid is my bunny")
 elif name == "leta":
 print("Leta is my bunny")
 else:
 print("this is not my bunny..")
else:
 print("Not my animal!")

Lists

Create an empty list

	1
2
3

	new_list = list()
or
new_list = []

Create a list with items

	1

	my_pets = ['euclid', 'leta']

Add onto a list

	1

	my_pets.append('socrates')

Index into a list

	1
2
3

	first_pet = my_pets[0]
second_pet = my_pets[1]
third_pet = my_pets[2]

Slice a list into a new list

	1
2
3
4
5
6
7

	# the syntax is
my_list[start:stop]
this includes the start position but goes UP TO the stop
you can leave either empty to go to the front or end

first_two_pets = my_pets[:2]
last_two_pets = my_pets[1:]

Test if a value is inside a list

	1
2
3
4
5
6

	## with any collection, you can test if an item is inside the collection
it is with the "in" keyword

my_pets = ['euclid', 'leta']
if 'euclid' in my_pets:
 print("Euclid is a pet!")

Sets

Create a set or convert a list to a set

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	my_pet_list = ['euclid', 'leta']

you can convert lists to sets using the set keyword
my_pet_set = set(my_pet_list)

sets are like lists but you can't index into them or slice them
they are used for fast membership testing

you can create a new set by:
my_pet_set = set(['euclid', 'leta'])

Add an item to a set

	1
2
3
4

	my_new_set = set()

instead of append, like a list, you use 'add'
my_new_set.add("Potatoes")

Using sets to enforce uniqueness

	1
2
3
4
5
6

	my_grocery_list = ['potatoes', 'cucumbers', 'potatoes']

now if you want to make sure items only appear once, you can convert it to a set
it will automatically do this for you, because items are only allowed to be in sets one time

my_grocery_set = set(my_grocery_list)

For Loops

Write a for loop

	1
2

	for i in range(10):
 print("do stuff here")

Use the for loop’s loop variable

	1
2
3
4

	for i in range(10):
 new_number = i * 100
 print("The loop variable is i. It equals {}".format(i))
 print("I used it to make a new number. That number is {}".format(new_number))

Use range inside a for loop

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	start = 3
stop = 10
step = 2

for i in range(stop):
 print(i)

for i in range(start, stop):
 print(i)

for i in range(start, stop, step):
 print(i)

Use a list inside a for loop

	1
2
3
4

	my_pets = ['euclid', 'leta']

for pet in my_pets:
 print("One of my pets: {}".format(pet))

Nest one for loop inside another for loop

	1
2
3
4

	for i in range(4):
 for j in range(4):
 result = i * j
 print("{} times {} is {}".format(i, j, result))

While Loops

Use a comparison

	1
2
3
4
5

	response = ""

while response != "exit":
 print("Inside the loop!")
 response = input("Please provide input: ")

Use a boolean variable

	1
2
3
4
5
6
7

	done = False

while not done:
 print("Inside the loop!")
 response = input("Please provide input: ")
 if response == "exit":
 done = True

Loop forever

	1
2

	while True:
 print("Don't do this! It is a bad idea.")

Special Loop Commands

Skip the rest of the current cycle in the loop

	1
2
3
4
5

	for i in range(100):
 if i < 90:
 continue
 else:
 print("At number {}".format(i))

Break out of the loop entirely

	1
2
3
4

	while True:
 response = input("Give me input: ")
 if response == "exit":
 break

Functions

No arguments and returns nothing

	1
2

	def say_hello():
 print("hello!")

Takes one argument

	1
2

	def say_something(the_thing):
 print(the_thing)

Returns a value

	1
2

	def double(x):
 return 2*x

Takes two arguments

	1
2
3
4
5

	def exp_func(x, y):
 result = x ** y
 return result

final_number = exp_func(10, 3)

Takes keyword arguments

	1
2
3
4
5
6

	def say_many_times(message, n=10):
 for i in range(n):
 print(message)

say_many_times("Hi!", 2)
say_many_times("Yay!", 10)

Time module

Using time.time() to count how long something takes

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import time

start = time.time()

for i in range(10000):
 continue

new_time = time.time()
total_time = new_time - start
print(total_time)

Using time.sleep(n) to wait for n seconds

	1
2
3
4
5
6
7
8
9

	import time

start = time.time()

time.sleep(10)

end = time.time()

print(start - end)

Random Module

Generate a random number between 0 and 1

	1
2
3
4

	import random

num = random.random()
print("the random number is {}".format(num))

Generate a random number between two integers

	1
2
3
4

	import random

num = random.randint(5, 100)
print("the random integer between 5 and 100 is {}".format(num))

Select a random item from a list

	1
2
3
4
5

	import random

my_pets = ['euclid', 'leta']
fav_pet = random.choice(my_pets)
print("My randomly chosen favorite pet is {}".format(fav_pet))

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Classes Cookbook

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Classes Cookbook

Design patterns and examples for classes! Use these to help you solve problems.

Defining a class

	1
2
3
4

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

Instantiating an object

	1
2

	# create the object!
fido = Dog("Fido", 7)

Writing a method

A method is the name of a function when it is part of a class.

You always have to include self as a part of the method arguments.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("Bow wow!")

fido = Dog("Fido", 7)
fido.bark()

Using the self variable

You can access object variables through the self variable.
Think of it like a storage system!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("{}: Bow Wow!".format(self.name))

fido = Dog("Fido", 7)
fido.bark()

odie = Dog("Odie", 20)
odie.bark()

Using the property decorator

You can have complex properties that compute like methods but act like properties.
Properties cannot accept arguments.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 print("{}: Bow Wow!".format(self.name))

 @property
 def human_age(self):
 return self.age * 7

fido = Dog("Fido", 7)
fido.bark()
print("Fido is {} in human years".format(fido.human_age))

Inheriting properties and methods

You can inherit properties and methods from the ancestors!
For example, the initial function below is inherited.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	class Animal:
 def __init__(self, name, age):
 self.name = name
 self.age = age

class Dog(Animal):
 def bark(self):
 print("{}: Bow Wow!".format(self.name))

 @property
 def human_age(self):
 return self.age * 7

class Cat(Animal):
 def meow(self):
 print("{}: Meow!".format(self.name))

fido = Dog("Fido", 7)
fido.bark()
print("Fido is {} in human years".format(fido.human_age))

You can also override certain things and call the methods of the ancestor!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	class Animal:
 def __init__(self, name, age, number_legs, animal_type):
 self.name = name
 self.age = age
 self.number_legs = number_legs
 self.animal_type = animal_type

 def make_noise(self):
 print("Rumble rumble")

class Dog(Animal):
 def __init__(self, name, age):
 super(Dog, self).__init__(name, age, 4, "dog")

 def make_noise(self):
 self.bark()

 def bark(self):
 print("{}: Bow Wow!".format(self.name))

 @property
 def human_age(self):
 return self.age * 7

class Cat(Animal):
 def __init__(self, name, age):
 super(Dog, self).__init__(name, age, 4, "cat")

 def make_noise(self):
 self.meow()

 def meow(self):
 print("{}: Meow!".format(self.name))

fido = Dog("Fido", 7)
fido.make_noise()
print("Fido is {} in human years".format(fido.human_age))

garfield = Cat("Garfield", 5, 4, "cat")
garfield.make_noise()

Using the classmethod decorator

There is a nice Python syntax which lets you define custom creations for your objects.

For example, if you wanted certain types of dogs, you could do this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	class Animal:
 def __init__(self, name, age, number_legs, animal_type):
 self.name = name
 self.age = age
 self.number_legs = number_legs
 self.animal_type = animal_type

 def make_noise(self):
 print("Rumble rumble")

class Dog(Animal):
 def __init__(self, name, age, breed):
 super(Dog, self).__init__(name, age, 4, "dog")
 self.breed = breed

fido = Dog("Fido", 5, "Labrador")

But you could also do this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	class Animal:
 def __init__(self, name, age, number_legs, animal_type):
 self.name = name
 self.age = age
 self.number_legs = number_legs
 self.animal_type = animal_type

 def make_noise(self):
 print("Rumble rumble")

class Dog(Animal):
 def __init__(self, name, age, breed):
 super(Dog, self).__init__(name, age, 4, "dog")
 self.breed = breed

 @classmethod
 def labrador(cls, name, age):
 return cls(name, age, "Labrador")

fido = Dog.labrador("Fido", 5)

Important parts:

	
	Instead self, it has cls as its first argument.

	
	This is a variable which points to the class being called.

	
	@classmethod is right above the definition of the class.

	
	It absolutely has to be exactly like this

	No spaces in between, just sitting on top of the class definition

	It’s called a decorator.

	
	It returns cls(name, age, "Labrador").

	
	This is exactly the same as Dog("Fido", 5, "Labrador") in this instance

	Overall, it is letting you shortcut having to put in the labrador string.

This is a simple example, but it is useful for more complex classes

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Cookbook

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Cookbook

A set of common recipes and design patterns

Game Loop

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	import pygame

start pygame's engines
pygame.init()

set the screen size
WINDOW_SIZE = (700, 500)

get a screen
screen = pygame.display.set_mode(WINDOW_SIZE)

get a clock used for FPS control
clock = pygame.time.Clock()

a simple flag variable for the loop
done = False

the main game loop
while not done:

 ## the event loop; used to check for events that occurred since the last time around
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True

 #### update the display and move forward 1 frame
 pygame.display.flip()
 # --- Limit to 60 frames per second
 self.clock.tick(FPS)

Drawing

Using Rect to draw

Rect is a useful PyGame class that is a wrapper around the standard rectangle information.

x = 0
y = 0
width = 100
height = 100
r1 = pygame.Rect(x, y, width, height)

The variable r1 now has access to a variety of different properties

x,y
top, left, bottom, right
topleft, bottomleft, topright, bottomright
midtop, midleft, midbottom, midright
center, centerx, centery
size, width, height
w,h

You can also update r1 using any of those variables. For example:

	1
2
3

	r1.center = (50,50)
r1.right = 10
r1.bottomright = 75

Bouncing off obstacles

Basic collision detection with screen boundaries

In the simplest case, we are testing to see if our rect is over some threshold.
This happens in the case of bouncing off the edges of the screen.
For this example, we assume we know the height and width of the window as well.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	# W, H are window width and window height

if r1.right > W:
 print("Over right side")
elif r1.left < 0:
 print("over left side")

if r1.top < 0:
 print("Over top")
elif r1.bottom > H:
 print("Over bottom")

Changing direction based on screen boundary collision

Let’s assume that the object in question is moving at some speed. In other words,
the x and y properties are being updated by some variable
dx and dy. Then, when the object bounces,
it should flip the signs of those speeds.

	1
2
3
4
5
6
7
8
9

	# W, H are window width and window height
r1.x += dx

if r1.right > W or r1.left < 0:
 dx *= -1

r1.y += dy
if r1.top < 0 or r1.bottom > H:
 dy *= -1

Colliding with another Rect

If you wanted to collide with another Rect, there are several different
ways you could it. The easiest way is to use the built in functions which test for collision.
However, these functions don’t tell you which parts collided.
An example of why this is a problem:

	There is a collision with a Rect and an obstacle from the bottom

	The Rect’s right side is technically past the obstacle’s left

	But, the issue is the y-movement, not the x-movement.

The first part of the solution is to update the X and Y parts separately.
With this method, one dimension is changed and checked for collisions.
Then, the other is changed and checked for collisions.

The second part of the solution is to “snap” the edges of the object and the obstacle together.
This just means making them line up exactly so no more collision is taking place.

The below code illustrates the Rect collision code,
the separate x and y movements, and the edge snapping.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	'''
in this example, self.rect is the rect of the object you are moving
'''

def move(self, dx, dy, other_rects):

 # move this object in the x direction
 self.rect.x += dx

 # go over each obstacle
 for other_rect in other_rects:

 # if there is a collision
 # since we moved only the x, we know it has to be this object's left or right
 if self.rect.colliderect(other_rect):

 # if dx is positive, it is moving right
 # if the right side is past the other rect's left, snap them together
 if dx > 0 and self.rect.right > other_rect.left:
 self.rect.right = other_rect.left

 # if dx is negative, it is moving left
 # if the left side is past the other rect's right, snap them together
 elif dx < 0 and self.rect.left < other_rect.right:
 self.rect.left = other_rect.right

 # move this object in the y direction
 self.rect.y += dy

 # go over each obstacle
 for other_rect in other_rects:

 # if there is a collision
 # since we moved only the y, we know it has to be this object's top or bottom
 if self.rect.colliderect(other_rect):

 # if dy is positive, it is moving down
 # if the bottom is past the other rect's top, snap them together
 if dy > 0 and self.rect.bottom > other_rect.top:
 self.rect.bottom = other_rect.top

 # if dy is negative, it is moving up
 # if the top is past the other rect's bottom, snap them together
 elif dy < 0 and self.rect.top < other_rect.bottom:
 self.rect.top = other_rect.bottom

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Cookbook

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Cookbook

A set of common recipes and design patterns for pygame with classes

Game Loop

The main game logic can be divided into two parts:

	Initialize the variables

	
	Run the game loop which does the following steps:

	
	Handle Events

	Update objects

	Draw

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	import pygame

class Game:

 def initialize(self):

 ## start pygame's engines
 pygame.init()

 ## get a screen
 self.screen = pygame.display.set_mode(WINDOW_SIZE)

 ## get a clock used for FPS control
 self.clock = pygame.time.Clock()

 self.example_box = pygame.Rect(0, 0, 100, 100)

 def run(self):
 ## a simple flag variable for the loop
 done = False

 ## the main game loop
 while not done:

 ### 1. Events

 ## the event loop; used to check for events that occurred since the last time around
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True

 ### 2. Updates
 ## update the example box with whatever you want
 self.example_box.x += 1

 ## 3. Drawing
 pygame.draw.rect(self.screen, BLACK, self.example_box)

 #### update the display and move forward 1 frame
 pygame.display.flip()
 # --- Limit to 60 frames per second
 self.clock.tick(FPS)

Basic Sprites

There are several ways to include objects, monsters, obstacles, etc in your pygame code.
The best way is to define your own classes that inherit from pygame’s Sprite class.

You should think of this as defining recipes for different objects in your game.
In this section, there are the following recipes:

	
	A basic sprite

	
	the core components of a sprite and how to use them

	
	Adding the drawing function to the basic sprite

	
	You can put the logic for the sprites inside the class, so it makes the game logic cleaner

	Your game shouldn’t have to worry about how sprites get drawn!

	
	Colliding with one other sprite

	
	Colliding with another sprite is handled just like in the simple case

	The trick is to correctly identify how the collision happened so you can fix it!

	
	Using Groups of sprites

	
	Group is a special pygame object that gives us extra shortcuts!

	
	Colliding with many sprites

	
	Using a Group, we can easily get the list of sprites our main sprite is colliding with

	
	Adding an image to your sprite

	
	Usually you will want to draw more than basic shapes. This will show you how!

	
	Adding event handling to your sprite

	
	If you want your sprite to do things, it should handle its own event logic!

	This means that the game just gives the events to the sprite and the sprite does what it needs to do.

	
	Making an animated sprite

	
	This will show you how the basic animation happens

Basic Sprite

For our basic sprite, we will subclass pygame’s sprite class.
Subclassing means that we will tell python that our new class is the exact same
as pygame’s sprite class. Then, whatever we can specialize any parts we want.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	class BasicSprite(pygame.sprite.Sprite):

 # by defining this function, we are overriding the parent class's function
 def __init__(self, color, width, height):

 # this is a special command which tells python to execute the parent's function
 # the pattern is
 # super(ThisClassName, self).func_to_call()
 super(BasicSprite, self).__init__()

 ### When you sublcass the sprite, you need two things

 # 1. self.image

 self.image = pygame.Surface([width, height])
 self.image.fill(color)

 # 2. self.rect

 self.rect = self.image.get_rect()

 # self.rect starts out at 0,0. if you want to change the location, you have to update these coordinates
 # this hard codes the BasicSprite to start at the coordinates 50,50
 self.rect.x = 50
 self.rect.y = 50

You can use this class in the same places you would before:

	Instantiate (create) the object at the beginning of the game

	Update the coordinates inside the game loop

	Draw the coordinates inside the game loop

One of the nice features about using sprites is that we only have to draw the
sprite’s self.image property. We do this with the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	class Game:

 def initialize(self):
 # other code was here

 # just remember that our screen is made here
 self.screen = pygame.display.set_mode(WINDOW_SIZE)

 self.example_object = BasicSprite(BLACK, 100, 100)

 def run(self):
 done = False

 ## the main game loop
 while not done:

 # other code was here

 ## the way to read this dot notation is:
 ## inside this Game object access (using "self") a variable called example_object
 ## inside example_object is the property "image" (which we defined just above)
 ## inside image is a function called blit
 ## blit takes two arguments:
 ## 1. the surface it should draw on, this is our screen.
 ## 2. the coordinates of where to draw it. this is the rect inside example_object
 ## overall, the syntax is:
 ## surface_variable.blit(screen_variable, rect_variable)

 self.example_object.image.blit(self.screen, self.example_object.rect)

 ## then don't forget the rest of the code here

So, to summarize:

	Subclass pygame’s Sprite class and define the self.image and self.rect.

	
	Inside the Game object’s initialize function, use the class to make a new object

	
	save this object to the self variable so we can access it later

	
	Inside the Game object’s run function, use the saved object to draw

	
	the syntax for drawing a sprite is showing above.

	You are calling blit to draw the sprite’s surface onto the main surface.

Adding the drawing function to the basic sprite

Doing that drawing logic inside the game loop is a bit messy.
Also, maybe we want to change how we draw the object based on some situation.
We don’t want to have the main game loop get all messy with that code.

To solve this problem, we put a draw function inside the BasicSprite class

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	class BasicSprite(pygame.sprite.Sprite):

 # by defining this function, we are overriding the parent class's function
 def __init__(self, color=BLACK, width=100, height=100):
 # notice it has default values for its paremeters!

 # this is a special command which tells python to execute the parent's function
 # the pattern is
 # super(ThisClassName, self).func_to_call()
 super(BasicSprite, self).__init__()

 ### When you sublcass the sprite, you need two things

 # 1. self.image

 self.image = pygame.Surface([width, height])
 self.image.fill(color)

 # 2. self.rect

 self.rect = self.image.get_rect()

 # self.rect starts out at 0,0. if you want to change the location, you have to update these coordinates
 # this hard codes the BasicSprite to start at the coordinates 50,50
 self.rect.x = 50
 self.rect.y = 50

 def draw(self, screen):
 # draw this object's image onto the passed in screen variable
 self.image.blit(self.screen, self.rect)

Moving a sprite

Moving a sprite is really easy! Everytime through the game loop, the sprite is drawn
using its internal rect object, which stores the location coordinates.

To move it, we just change those coordinates before it is drawn!

We are going to have a theme with this code. Any functionality we want our
BasicSprite to have, we will put it inside that class!

To illustrate how you can subclass and keep specializing, let’s subclass our previous
BasicSprite to make a MovingSprite:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	class MovingSprite(BasicSprite):
 # MovingSprite has all the functions and properties that
 # BasicSprite has

 def move(self, dx, dy):
 ## move dx units in the x direction
 ## move dy units in the y direction

 self.rect.x += dx
 self.rect.y += dy

Now, let’s change one more thing about this. Let’s alter the __init__ function
so that the dx and dy are internal!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	class MovingSprite(BasicSprite):
 # MovingSprite has all the functions and properties that
 # BasicSprite has
 def __init__(self, color=BLACK, width=100, height=100):
 super(MovingSprite, self).__init__(color, width, height)

 self.dx = 0
 self.dy = 0

 def move(self):
 ## move dx units in the x direction
 ## move dy units in the y direction

 self.rect.x += self.dx
 self.rect.y += self.dy

Colliding with one other sprite

Pygame provides several ways to handle collisions with sprite objects.

From the documentation, it says the following thing:

pygame.sprite.collide_rect()

Collision detection between two sprites, using rects.

collide_rect(left, right) -> bool

Tests for collision between two sprites. Uses the pygame rect colliderect function to calculate the collision.
Intended to be passed as a collided callback function to the *collide functions. Sprites must have a “rect” attributes.

Basically, this means that you can give this function two sprites and it will tell
you True or False.

We are going to have a theme with this code. Any functionality we want our
sprite objects to have, we will put it inside that class!

To illustrate how you can subclass and keep specializing, let’s subclass our previous
BasicSprite to make a CollisionSprite:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

	class CollisionSprite(BasicSprite):
 # CollisionSprite has all the functions and properties that
 # BasicSprite has, which has all of the functions BasicSprite has!

 def handle_collision(self, other_sprite, dx, dy):
 # we are going to define the logic for handling the collision with
 # one other sprite

 # there are two extra variables this function is taking.
 # they are the dx and dy. we need these so we know which direction
 # the sprite is moving!
 # Note: we want to make sure we only move x or y.
 # if we are moving both, then we don't know whether the collision
 # is from the top/bottom or from the sides.

 if dx != 0 and dy != 0:
 # this syntax is:
 # "raise" is a way of manually throwing errors and exceptions
 # "Exception" is the default exception
 # by doing
 # raise Exception(some_message)
 # we are stopping the program and causing an error.
 raise Exception("ERROR: don't move both x and y at the same time; Collision checking is impossible if you do this!")

 if pygame.sprite.collide_rect(self, other_sprite):
 ## if this "if" is true, then this means a collision is happening!
 ## let's check and see which direction it is

 ## check if the sprite is moving in the x direction:
 # if dx is positive, it is moving right
 # if the right side is past the other rect's left, snap them together
 if dx > 0 and self.rect.right > other_sprite.rect.left:
 self.rect.right = other_sprite.rect.left

 # if dx is negative, it is moving up
 # if the left side is past the other rect's right, snap them together
 elif dx < 0 and self.rect.left < other_sprite.rect.right:
 self.rect.left = other_sprite.rect.right

 # if dy is positive, it is moving down
 # if the bottom is past the other rect's top, snap them together
 if dy > 0 and self.rect.bottom > other_sprite.rect.top:
 self.rect.bottom = other_sprite.rect.top

 # if dy is negative, it is moving up
 # if the top is past the other rect's bottom, snap them together
 elif dy < 0 and self.rect.top < other_sprite.rect.bottom:
 self.rect.top = other_sprite.rect.bottom

 ## Let's re-write the move function from before to handle collisions
 def move(self, other_sprite=None):
 ## we will assume that we are given access to a single other sprite
 ## as an argument to this function
 ## we will give it a default value of None though, so it's only optional

 ## move dx units in the x direction
 self.rect.x += self.dx

 if other_sprite is not None:
 # handle the x collision!
 self.handle_collision(other_sprite, self.dx, 0)

 ## move dy units in the y direction
 self.rect.y += self.dy

 if other_sprite is not None:
 # handle the y collision!
 self.handle_collision(other_sprite, 0, self.dy)

Using Groups of sprites

Pygame’s Group class is really useful for storing objects.
We would use it inside the initialize function of Game so store
each of the sprites that we create.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	class Game:

 def initialize(self):
 # other code was here

 # just remember that our screen is made here
 self.screen = pygame.display.set_mode(WINDOW_SIZE)

 ## use group to manage a list of basic sprites
 self.basic_sprites = pygame.sprite.Group()

 # let's create a couple basic sprites
 for i in range(5):
 # create the new sprite
 # notice no self variable
 # that's because I know I'm not saving this inside self
 # instead, I'm saving this inside self.basic_sprites
 new_sprite = BasicSprite(BLACK, 100, 100)

 # doing this to offset the sprites so we can see them
 new_sprite.rect.x += i * 50
 new_sprite.rect.y += i * 50

 # save it to self.basic_sprites
 self.basic_sprites.add(new_sprite)

 def run(self):
 done = False

 ## the main game loop
 while not done:

 # other code was here

 # because you used a group to handle the basic sprites, you
 # can shortcut the drawing of them by using group's draw function:

 self.basic_sprites.draw(self.screen)

Colliding with many sprites

First, we are going to add some functionality to our CollisionSprite to handle group collisions!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	class GroupCollisionSprite(CollisionSprite):
 # CollisionSprite has all the functions and properties that
 # CollisionSprite has, which has all of the functions CollisionSprite has!

 def handle_group_collision(self, sprite_group, dx, dy):
 # we pass in the "sprite_group", and the movements again

 # the False here is the option to remove all sprites being collided with
 # from the group.
 # if True, sprite_group will no longer have them and they won't be drawn anymore
 # the returned object, colliding_sprites, is a list of sprites!
 colliding_sprites = pygame.sprite.spritecollide(self, sprite_group, False)

 # go through each of the sprites in this list
 for sprite in colliding_sprites:

 # use the function from CollisionSprite to handle this!

 self.handle_collision(sprite, dx, dy)

 ## Let's re-write the move function from before to handle group collisions
 def move(self, collision_group=None):
 ## we will assume that we are given access to a single other sprite
 ## as an argument to this function
 ## we will give it a default value of None though, so it's only optional

 ## move dx units in the x direction
 self.rect.x += self.dx

 # make sure it's not the default value
 if collision_group is not None:
 # handle the x collision!
 self.handle_group_collision(collision_group, self.dx, 0)

 ## move dy units in the y direction
 self.rect.y += self.dy

 # make sure it's not the default value
 if collision_group is not None:
 # handle the y collision!
 self.handle_group_collision(collision_group, 0, self.dy)

Now that we have GroupCollisionSprite which can handle colliding with a group
of sprites, let’s add it into Game.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	class Game:

 def initialize(self):
 # other code was here

 # just remember that our screen is made here
 self.screen = pygame.display.set_mode(WINDOW_SIZE)

 ## use group to manage a list of basic sprites
 self.basic_sprites = pygame.sprite.Group()

 # let's create a couple basic sprites
 for i in range(5):
 # create the new sprite
 # notice no self variable
 # that's because I know I'm not saving this inside self
 # instead, I'm saving this inside self.basic_sprites
 new_sprite = BasicSprite(BLACK, 100, 100)

 # doing this to offset the sprites so we can see them
 new_sprite.rect.x += i * 50
 new_sprite.rect.y += i * 50

 # save it to self.basic_sprites
 self.basic_sprites.add(new_sprite)

 # it has the same __init__ function as BasicSprite
 self.hero = GroupCollisionSprite(BLACK, 100, 100)

 def run(self):
 done = False

 ## the main game loop
 while not done:

 # other code was here

 # remember the loop order:
 # Events, Updates, and then Draw

 # Updates is where collisions and movement goes
 # let's move the hero and have it handle sprite collision!
 self.hero.move(self.basic_sprites)

 # because you used a group to handle the basic sprites, you
 # can shortcut the drawing of them by using group's draw function:

 self.basic_sprites.draw(self.screen)
 self.hero.draw(self.screen)

Adding an image to your sprite

Adding an image is super easy! The main thing is to change how self.image gets defined!

Since our class, GroupCollisionSprite has so much functionality now, let’s just subclass it
and override the __init__ function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	class ImageSprite(GroupCollisionSprite):

 def __init__(self, image_filename, colorkey=WHITE):

 # because all of the arguments in BasicSprite were optional, we
 # can just call the init function
 super(ImageSprite, self).__init__()

 # now, we overwrite image
 self.image = pygame.image.load(image_filename).convert()

 # Set our transparent color
 self.image.set_colorkey(colorkey)

 # refresh the rect now
 self.rect = self.image.get_rect()

And that’s it!

If you wanted to do this without subclassing GroupCollisionSprite, you
could just subclass pygame.sprite.Sprite again and define self.image in this way.

Adding event handling to your sprite

It’s really useful to be able to handle keyboard input! In fact, if you want
people to play your game, it has to be able to handle input.

There are two ways you could do this. You could add code inside Game which will
manually update the hero. But we don’t want Game to care about such things!

So, instead, we will let Game just give every single event to the hero!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	class Game:

 def run(self):
 done = False

 ## the main game loop
 while not done:

 ## the event loop

 ## the event loop; used to check for events that occurred since the last time around
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True
 else:
 # if the event isn't a quitting event, give it to the hero!
 self.hero.handle_event(event)

And that’s it! Now, writing this code creates an expectation from python that
our hero will have this function implemented. So, let’s do that.

class EventHandlingSprite(ImageSprite):
 # I inherited from the ImageSprite
 # if you don't want to do this, you can replace ImageSprite with GroupCollisionSprite
 # since that was our second most advanced sprite so far

 # remember, because we are inheriting, we get all of the functionality from before!

 def handle_event(self, event):
 # there are a couple of different pygame events:
 if event.type == pygame.KEYDOWN:
 # this is a keydown event
 # this means a key is pressed

 if event.key == pygame.K_LEFT:
 self.dx = -5
 elif event.key == pygame.K_RIGHT:
 self.dx = 5
 elif event.type == pygame.KEYUP:
 # this is a keyup event
 # this means a key was let go

 if event.key == pygame.K_LEFT:
 self.dx = 0
 elif event.key == pygame.K_RIGHT:
 self.dx = 0

Thsi is really simple event handling. For instance, if you press two keys at once,
this will have some weird results. But at least it will handle some input!

To overcome the two-keys-at-once problem, you will have to do something a bit more complicated.
For instance, you could have the left key subtract 5 from self.dx and then
use min to make sure it is never smaller than -5. You could also have some
boolean variables that are internal to the sprite which keep track of which keys have been pressed.

Making an animated sprite

Basic Game Physics

Physics is very important to games! Since you are telling the game how each object
updates, you have to use math to update the objects to match how physics works.
This can sometimes be hard, but there are plenty of ways to make it easier.

In this section, there are the following recipes:

	
	Bouncing off walls

	
	If an object is moving in a direction and encounters an obstacle, it could bounce

	Bouncing in certain ways looks and feels weird

	So, you should bounce in a way that feels real!

	
	Gravity

	
	Instead of letting objects freely move in both x and y directions, gravity constantly affects the y!

	You can think of this as making so that your object always wants to be moving down at 9 units at a time

	
	Jumping

	
	Jumping is just the opposite of gravity

	When the jump happens, there is a force which makes the object want to move up at 9 units!

	In other words, the y speed is set to -9

	Then, every frame, the speed slowly goes back to +9.

Handling Keyboard Input

	
	Basic keyboard input

	
	handle single keys

	do specialized things

	
	Continuous keyboard input

	
	continue to do something until key is released

	this is basically the example in the earlier section!

	
	Advanced continuous keyboard input

	
	use extra variables to keep track of which key was pressed!

Scoreboards

	
	Drawing an extra surface that never moves

	
	In the same logic as the sprite, except that it doesn’t move and is always drawn last.

Menus

	
	Use a “card” concept to draw different viewpoints

	
	A “card” is a certain way the game is

	The standard one is your actual game

	The menu one handles menu inputs and draws the menu

	Inside the game loop, you check which card is active and give all event, update, and draw information to it.

	The card then gives all up the information to its members.

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Animation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Animation

The tools we are going to use for animation are going to be PyGame and Python.
There is information on how to install pygame linked here.

PyGame

PyGame provides you with a couple core things:

	A way to interact with a canvas

	A set of ways to draw shapes and images to the canvas

	A procedure for repeating the code and updating the screen to make things animated

There are a couple initial things for pygame.

I have outlined the basic code here:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	import pygame

INIT SECTION
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)

size = (700, 500)
done = False

pygame.init()

screen = pygame.display.set_mode(size)
clock = pygame.time.Clock()

pygame.display.set_caption("My Animation")

This is the header code for pygame. It does the following things:

	Imports the pygame library

	Defines some basic colors. These are in the RGB format in tuples.

	Define the size of the screen as a tuple.

	Create a boolean variable to represent whether the animation is done yet.

	pygame.init() starts the pygame engine.

	
	After the engine is started, you can set the screen size and get the clock.

	
	the clock is useful for setting and changing the frames per second.

	You can also optionall set the title of the screen

With this part, you are not quite done. You now need to have the game loop!

Game Loop

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	# -------- Main Program Loop -----------
while not done:
 #### EVENT CHECK SECTION
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True

 #### CLEAR THE SCREEN
 screen.fill(WHITE)

 #### DRAWING SECTION

 # empty

 #### TELL THE SCREEN TO UPDATE
 pygame.display.flip()

 #### TELL THE CLOCK YOU WANT 60 FRAMES PER SECOND
 clock.tick(60)

Close the window and quit.
pygame.quit()

You should combine this code with the code from the last second.
When run together, it should open a blank white screen.
Let me know if it doesn’t, because then there is something wrong.

Drawing Objects

Pygame has several different objects it can draw.
There is a specific format to them.
There are complete docs at the pygame docs [https://www.pygame.org/docs/ref/draw.html], but I will
describe a couple things here.

The screen object created in the initial section is very important.
It is used to reference the screen for drawing!
Inside the drawing section in the while loop, add the following:

	1

	pygame.draw.rect(screen, BLACK, (0, 0, 100, 100))

This code does the following:

	It uses the pygame.draw.rect function draw a rectangle

	It uses the screen object to draw to the screen

	It uses the BLACK color to pick the rectangle’s color

	
	It uses a 4-length tuple (0,0,100,100) to define the shape of the rectangle.

	
	The format of this tuple is: (left_x, top_y, width, height)

The pygame website describes this code as: rect(Surface, color, Rect, width=0) -> Rect.
This means that the rect(...) function takes as input the Surface, which we call screen,
a color, a capital-R Rect, and optionally the width. The arrow means it returns back a
capital-R Rect.

The capital-R Rect is a specific PyGame variable type. I will show
how to use that in the next section. But, you can also just use tuples in this case.
We also aren’t saving the Rect that it produces.

Explore the code on the pygame docs. Explore the different shapes.
To list them here:

rect(Surface, color, Rect, width=0) -> Rect
polygon(Surface, color, pointlist, width=0) -> Rect
circle(Surface, color, pos, radius, width=0) -> Rect
ellipse(Surface, color, Rect, width=0) -> Rect
arc(Surface, color, Rect, start_angle, stop_angle, width=1) -> Rect
line(Surface, color, start_pos, end_pos, width=1) -> Rect
lines(Surface, color, closed, pointlist, width=1) -> Rect

We are not importing the functions completely, so we are calling them as
pygame.draw.* where the * is polygon, circle, rect, etc.

Keeping track of state

The structure of the pygame code is:

create variables and initialize them

start loop
 draw and update things inside the loop
 the loop ends when the animation ends

close the window

In order to keep track of the state of things, you have to create variables
to represent the state in the first part.

An easy way to play with this is to create x and y variables and
set them to some number like 0

x = 0
y = 0

then use them to draw the object inside the loop.

inside the loop
pygame.draw.rect(surface, BLACK, (x, y, 100, 100))

Finally, you can then change the x and y inside the loop!

x += 1
y += 1

Now, the object will move!

The core elements of the game loop

The game loop follows this pattern:

	Handle Events

	Update states

	Draw everything

Where you should go from here

Your goal now is to make an animation. You can continue to use variables like above
and use functions to modify those variables. You can also use classes,
which are described elsewhere and in the cookbooks linked below.

You should work on doing the following:

	Putting the game loop inside a function or inside a class

	Put the event handling, state updating, and drawing inside functions or classes.

You should also answer the following questions:

	What is the overall goal of your animation?

	What are the pieces of your animation?

	How do those pieces change over time?

	What variables do you need to represent those changes?

	What python syntax is really useful for all of these things?

In addition to the main cookbooks, there are a couple additional cookbooks which you can use:

	
	Simple PyGame cookbook

	
	covers pygame examples without using classes

	
	PyGame with Classes cookbook

	
	covers pygame using classes

	has a lot of functionality explained!

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Interactive Stories

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Interactive Stories

Flow charts and structure

You should decide on the structure and topic of your story pretty early.
Are you going to be writing fiction or non-fiction?
What is the context and background?

For an interactive story, there should be some actions that the reader can take.
For example, maybe they are entering into a house and need to choose rooms.
Or, they could be walking through a forest.

Once you have these details at least partially determined, you should start making
a flow chart for your ideas. It’s ok if the flow chart changes over time.

A flow chart starts with the initial point—the beginning of the story.
The information of the story will flow from this initial point.
You can use either paper to draw this or you can use an online website
(for example, draw.io is an ok one [https://www.draw.io/]).

Any specific point in the story is sometimes called the “state”.
The state is a specific setting of variables. And since this is a story
you are programming, the set of variables are the variables you will be using
to keep track of the story.

Remember that you are drawing hte information flow.
There are several kinds of shapes in the flow charts:

Ovals are start/end points

Ovals are either the starting or ending points. They are where the story starts and stops.

Rectangles/Boxes are processing points

Boxes represent the processing of information. Into the box flows some information and
out flows other information. You draw this as a line flowing into a box and a line flowing out.
You could think about representing different rooms or states with boxes.

Diamonds are decision points

If you have a choice the user can make, you draw that as a diamond. Since the information
flow is being drawn as lines, a line connect to the diamond. It is good to draw an arrow on the line to show
which direction it is flowing.

Each choice is a different path from the diamond.
I usually try to keep my diamonds as True/False and have a path come off one side of the diamond
and off the point opposite from where the information flow entered the diamond.

Other shapes

There are a lot of shapes people use and slightly different ways to use them.
You have complete freedom to represent other types of information flow with other shapes.
Just make sure you use them the same way everywhere. I personally only work with these three shapes.

Understanding State

The word state refers to a specific setting of variables. In practice, there are
several different ways you could accomplish this.
It is important to think about it in the following way:
in the flow chart, you are defining how information flows from state to state, but in the code, you should
be trying to design code that works similarly for every state.

The simplest state, for example, is to have just a single number which represents
which state you are in. Then, when you need to have code that is conditional on the state, you could do:

	1
2
3
4
5
6
7
8

	state = 1 # for example

if state == 0:
 print("In state 0")
if state == 1:
 print("In state 1")
if state == 2:
 print("In state 2")

In a flow chart, you could do:

 Minecraft Architect Tutorial

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Minecraft Architect Tutorial

The goal of this tutorial is walk you through how to be a minecraft architect.

The first steps are going to be:

	Get the correct setup going (see Installing Minecraft)

	Start interacting with the world

This tutorial will cover a few of the basic information and then some techniques for building things in minecraft.

To start:

	Start the minecraft server

	Log into the minecraft client (make sure you set the version under the profile settings to 1.9.2!)

	connect to a world at the address localhost or 127.0.0.1

4. Open up an iPython terminal to test the connection and type in

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.postToChat("hello world!")

5. From now on, you should use a file and do the first following lines so that you have access to the mc object and the Vec3 class.

from mcpi.minecraft import Minecraft
from mcpi.vec3 import Vec3
mc = Minecraft.create()

Information: User-Centric Positioning

The first thing you should think about is that everything you do is based around the user.
The user is located at a specific place in the world, which are the set of (x,y,z) coordinates.
So, when you construct anything, you are constructing relative to them.

You get the positions by:

pos = mc.player.getPos()
to see what this looks like, you can do
print(pos, type(pos))
you can also get the x,y,z individually:
print(pos.x, type(pos.x))
print(pos.y, type(pos.y))
print(pos.z, type(pos.z))

It is best to draw things out on paper and plan them.
For instance, if you want to make a wall next to the user, you should figure out what the adjustments to the x and z would be.
One spot away from the user would be pos.x-1 or pos.z-1

Information: Placing Blocks

You can place either a single block or multiple blocks of the same type.

Single Blocks

For a single block, you either specify a Vec3 object, or the 3 coordinates.
You also specify the block number. You will have a book looking these up.

pos = mc.player.getPos()
set by the Vec3
mc.setBlock(pos, 42)
set by each spot individually
mc.setBlock(pos.x, pos.y, pos.z, 42)

but probably set in front of user, not where they are
mc.setBlock(pos.x+1, pos.y, pos.z+1, 42)

Vectors can add, so instead of typing out the 1 away with each spot individually, you can do

pos = mc.player.getPos()
offset = Vec3(1,0,1)
new_pos = pos + offset
mc.setBlock(new_pos, 42)
you could have also done:
mc.setBlock(pos + offset, 42)
or even
mc.setBlock(pos + Vec3(1,0,1), 42)

Multiple Blocks

For multiple blocks, you are specifying a cube. For this, you have to give the two corners of the cube.
For example, you could do:

mc.setBlocks(0,0,0, 3, 3, 3, 42)

This would create a 3 by 3 by 3 cube. Note, because I didn’t use relative coordinates, you won’t be able to find this cube.
To make it relative to the player:

pos = mc.player.getPos()
mc.setBlocks(pos.x, pos.y, pos.z, pos.x+3, pos.y+3, pos.z+3, 42)
or more easily:
mc.setBlocks(pos, pos+Vec3(3,3,3), 42)

Let’s make a giant box around the player. You will probably have to break your way out.

pos = mc.player.getPos()
mc.setBlocks(pos-Vec3(5,5,5), pos+Vec3(5,5,5), 42)

Technique: Layers

When you’re placing blocks, if you want to have a unique shape, you can play the blocks in layers.
Imagine building a pirate ship, for example. Each layer starting from the bottom would get longer and longer and slightly wider.
This would create a oval-type shape that ships have on their bottom.

You could do the layer technique for faces, buildings, triangles, etc.

How could you use the layer technique to build a four-sided pyramid?

Technique: Negative Space

One thing you can do is think about building things with negative space.

For example, let’s say I wanted to build a box around the player, but I didn’t want them to suffocate.
Well, you could create the cube first, and then replace the inner part of the cube with a smaller cube of air.

pos = mc.player.getPos()
cube_size = Vec(5,5,5)
air_size = Vec(4,4,4)
mc.setBlocks(pos-cube_size, pos+cube_size, 42)
mc.setBlcoks(pos-air_size, pos+air_size, 0)

Technique: Block Collections

Another thing you can do is create collections of blocks using lists and then
have a function which can iterate over them and place them one at a time.

def set_points(points, mc, block_type):
 for point in points:
 mc.setBlock(point, block_type)

example usage
pos = mc.player.getPos()
points = list()
for i in range(10):
 points.append(pos+Vec3(-1*(i%5), i%5, i%5))
set_points(points, mc, 42)

Technique: Circles

You could also do a block collection that uses sin or cos to create a circle. I will explicitly give this one to you.
Here I am using a set because it enforces uniqueness. No point can exist twice.

def taxicab_circle_x(r):
 point_set = set()
 x = 0
 for angle in range(360):
 theta = math.radians(angle)
 y = math.floor(r*math.sin(theta))
 z = math.floor(r*math.cos(theta))
 point_set.add(Vec3(x, y, z))
 return point_set

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Data Analysis Tutorial

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Data Analysis Tutorial

More datasets

	Simpler Datasets [https://vincentarelbundock.github.io/Rdatasets/datasets.html]

	A huge list of datasets [https://github.com/caesar0301/awesome-public-datasets]

	538’s datasets [https://github.com/fivethirtyeight/data]

Overview

The goal of this tutorial is to talk about the important parts of beginning data analysis.

The typical analysis pipeline goes through the following stages:

	Think about the data you would like

	
	Either find a way to collect that data, or find data that already exists

	
	sometimes you might have to compromise on data because it’s easier to just use stuff that exists already

	I have provided links to datasets above.

	For this tutorial, there is a titanic dataset

	
	Write code that takes the data from a file or database and loads it into a data structure

	
	We will be using Pandas, a data management library

	Pandas makes manipulating data really easy

	
	Write code that puts the data into different forms that match the task you want to do.

	
	For instance, if you want to view interesting properties of your data as a scatter plot, you need to get two lists: one for the x positions and 1 for the y positions

	You should be thinking about what kinds of things the data can tell you

I will be writing this tutorial while looking at the titanic dataset.
The titanic dataset is a list of passengers, information about them, and whether they survived or not.

Getting the Data

I have made the data easy to get:

from urllib import request
import pandas as pd
filepath = 'https://gist.githubusercontent.com/braingineer/5d15057ac482ee0130b6d0e6f9cc9311/raw/d4eefaecc98b342ec578cf3512184556e8856750/titanic.csv'
response = request.urlopen(filepath)
df = pd.read_csv(response)
df = df.fillna(0)

Using Pandas and Matplotlib

Some example tutorials

	Simple Graphics [http://pbpython.com/simple-graphing-pandas.html]

	Beautiful Plots [https://datasciencelab.wordpress.com/2013/12/21/beautiful-plots-with-pandas-and-matplotlib/]

Some simple operations

Selecting a column

age_column = df['Age']

Selecting a subset

df2 = df[age_column > 0]

View the columns

print(df2.columns)

Visualize a scatter plot

plt.scatter(df2['Survived'], df2['Age']);
or with columns out
surv_col = df2['Survived']
age_col = df2['Age']

Seaborn

If you don’t already have it, to install seaborn, type in a single cell in your Jupyter Notebook:

!pip install seaborn

Then, you can do the following:

import seaborn as sns
sns.barplot(data=df, x='Pclass', y='Survived')

You can see more examples of seaborn plots at the seaborn website [https://stanford.edu/~mwaskom/software/seaborn/examples/index.html]

Some examples to get you started:

sns.countplot(data=df, x='Sex', hue='Survived')

do these in different cells otherwise they will try to plot on top of each other
sns.factorplot(data=df, x='Pclass', y='Age', col='Sex', kind='swarm', hue='Survived', x_order=[1, 2, 3])

Science

To use data for science, you want to get summarize what happened.
In other words, you want to tell a story with the data.
To do this, you have to look at the different properties: counts, means, proportions, etc.

A good way to formulate a scientific question is to think about different groups.
If the rate at which something happens is different between the two groups, then there is an effect of group.

Some terminology

	Proportion: A proportion is a number between 0 and 1 that signifies the part to whole relationship.
- If you eat half of a cake, the proportion you ate is 0.5

	Percentage: A percentage is a number between 0 and 100 that signifies the part to whole relationship
- If you eat half of a cake, the percentage is 50%

Questions you can ask

	How many people were on the Titanic?

	What percentage of the passengers did not survive?

	How many of the passengers were male? How many were female?

	How many male passengers survived? How many female? Is there an interesting relationship?

	What is the proportion of 3rd class passengers who survived?

	Is there an effect of class on the survivability of the gender?

	What is the mean age per class?

Additional setup

A version I was working that renames and cleans a version of the dataset:

from urllib import request
import pandas as pd
import seaborn as sns
%matplotlib inline
filepath = 'https://gist.githubusercontent.com/braingineer/5d15057ac482ee0130b6d0e6f9cc9311/raw/d4eefaecc98b342ec578cf3512184556e8856750/titanic.csv'
response = request.urlopen(filepath)
df = pd.read_csv(response)
df = df.fillna(0)
cols = df.columns.values
idx = list(cols).index('Pclass')
cols[idx] = "Class"
df.columns = cols
df_clean = df[df['Age']>0]

And a couple extra plots I was looking at:

super fancy
sns.factorplot(data=df_clean, kind='violin', split=True, inner='stick', scale='count', x='Class', y='Age', hue='Survived', col='Sex')

really sad
sns.factorplot(data=df_clean, kind='bar', col='Class', x='SibSp', y='Age', hue='Survived', row='Sex')

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Turtle Artist

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Turtle Artist

The basics of a turtle artist are being able to make creations that are more complicated than a single function.

The goals you should have are:

	
	Create a class which wraps around a turtle

	
	This means that it has an internal variable that is a turtle (or multiple turtles)

	All of the class functions will then use that single turtle to do things

	
	Make it either interactive or periodic.

	
	
	Periodic means the Turtle Artist goes through phases and those phases repeat forever.

	
	This does not mean a single looping turtle that draws the same thing forever.

	You could think of a clock, for example, which constantly updates the time.

	Interactive means that you can use the keyboard to influence how the turtle does things.

	It should be a purposeful design. Randomly doing things is not an acceptable solution.

I recommend the interactive route. There are a lot of cool things you can do!

For instance:

import turtle
class SuperTurtle:
 def __init__(self):
 self.grow_bigger = True

 def run(self):
 self.screen = turtle.Screen()
 self.inner_turtle = turtle.Turtle()
 self.screen.onkey(self.square, "s")
 self.screen.onkey(self.speed_up, "f")
 self.screen.onclick(self.hop)
 self.screen.ontimer(self.size_cycle, 50)
 self.screen.listen()

 def square(self):
 for i in range(4):
 self.inner_turtle.forward(100)
 self.inner_turtle.left(90)
 def speed_up(self):
 current_speed = self.inner_turtle.speed()
 if current_speed < 10:
 self.inner_turtle.speed(current_speed+1)
 def hop(self, x, y):
 self.inner_turtle.penup()
 self.inner_turtle.goto(x,y)
 self.inner_turtle.pendown()

 def size_cycle(self):
 s1, s2, s3 = self.inner_turtle.shapesize()
 if self.grow_bigger:
 self.inner_turtle.shapesize(s1+1, s2+1, s3)
 else:
 self.inner_turtle.shapesize(s1-1, s2-1, s3)
 if s1+1 > 20:
 self.grow_bigger = False
 elif s1-1 < 5:
 self.grow_bigger = True
 self.screen.ontimer(self.size_cycle, 50)

bob = SuperTurtle()
bob.run()
turtle.done()

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Chatbot Tutorial

 Navigation

 	
 index

 	
 previous |

 	Intro to Python; Fall 2016 0.1 documentation

 	Tutorials

Chatbot Tutorial

The goal of this tutorial is to introduce the idea of reflex-response agents and finite state automata.

Reflex-Response Agents

Agent is a word used in Artificial Intelligence to refer to programs that are meant to act on their own.

There are several types of agents. The one we will cover here is a reflex-response agent.
Our reflex-response agent will look at the world in turns. Each turn, there is an input, and each turn, it has to choose an output.
This is what is meant by reflex-response. It responds as a reflex to the input.

There are some famous reflex-response agents. The most famous is Eliza [https://en.wikipedia.org/wiki/ELIZA].
When you plan your chatbot, you should think about how it compares to Eliza. In fact, it wouldn’t be bad to try to recreate her.

So, what does it take for a Reflex-Response Agent?
There needs to a separation of the two major components: the agent’s brain and the agent’s interface.
The brain handles the thinking, the interface handles the communication through the terminal.

Our reflex-response agent is going to be slightly more advanced than usual, however.
I will cover that in the brain section.

Interace

So, begin by designing the interface. How should it act?
It should be a while loop that acts in the following steps:
1. Present information to the user about the task
2. Ask the agent what it wants to say
3. Show that to the user
4. Wait for the human to say something
5. Send the human’s response to agent
6. Go back to Step 2.

For a pure turn based reflex-response agent, that is all that it takes to interface with the human.
Of course, it would be better if it were more like a chat room or text messaging interface where the agent didn’t have to wait for the human to respond and vice versa.
However, that’s more of a second stage project.

Brain

The brain needs to be able to take the input from the human and respond to it.
You should do this so the agent’s brain has an internal state. This means that
it can keep track of different properties, such as the user’s name or what it has previously said.

For this, you need to design the agent’s class.
- What functions should it have?
- What should it pay attention to?
- What properties are important in the conversation?
- What do you want the agent to do?

I have implemented an agent before that kept track of todo lists and reminded me of things.
I have also had it so that it could check on things like the time.

A basic agent class could look like

class Agent:
 def __init__(self, important, properties):
 self.important = self.important
 self.properties = self.properties
 self.startup_stuff()

 def startup_stuff(self):
 ''' any complex startup logic should go here '''

 def observe(self, observation):
 ''' this is the incoming sentence. you could call it something else if you'd like.
 I call it observation just because I also deal with agents that see properties of the world
 '''

 def speak(self):
 ''' this should have the agent say something. this is the sentence shown to the user
 '''

And that’s about it. You have to figure out how you want the agent to respond to sentences, now.
For this, you have to see if the incoming string matches something you know about.
One possible way of doing this is think about it in the following sense:

	
	Get the input string and process it by checking it for words or phrases

	
	for example, maybe the user said “Hi! How are you” and you want to find the phrase “How are you”

	Have your checking be a process which returns a number, perhaps 1-5, depending on what it found.

	Have a set of responses set up that respond to the numbers 1-5.

The reason this method could be good is that you’re funneling the wide range of the ways people could say things
into a smaller number. Then, you write responses to that smaller number.
The process of reducing the wide range of ways people could say things is called classification.
By writing code that classifies, you are doing rule-based classification.

You could even have a function which checks for things like: “My name is”, “I am”, “You are”, “we will”.
Then, you can take whatever is the in the rest of that sentence and use it in some way.

Finite State Automata

I will briefly cover finite state automata. Today you should concentrate on the agent.

In a conversation, we go through a series of states. A state means a certain settings of the current situation.
For example, when we first see someone, we are the “greeting” state. This means that the appropriate things to say are about greetings.
Then, we move to another state. In class, we move to a “checkpoint” state where I ask the students how their homework went.

An agent that has states and has transitions between states is called a finite state automata. For example:

[image: http://oldblogimages.metawrap.com/2008/WindowsLiveWriter/PracticalApplicationsOfFiniteStateMachin_C2DB/244px-Finite_state_machine_example_with_comments.svg_2.png]
It is useful to represent the states explicitly.
The reason is that you might have different responses to the same exact string given different states.
If you wanted into class and said “goodbye”, I would be confused. If the class is ending and you say “goodbye”, that makes sense.

The way you can represent states in an agent is to a separate class for states.
Then, you would have a new copy for each new type of state.
Each state copy would be setup with different variables so it could manage the things you want to do.

Then, inside the agent, whenever it gets an input, it would use the current state to get its response.
It would then decide whether or not it should stay in the same state or move to a new state.
A good way of managing this is to have each state have a set of conditions. As soon as those conditions are met,
it tells the agent that it should move on.

These are all very complex ideas.
One nice blog post on these types of ideas are from the gamasutra blog [http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php].

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	Intro to Python; Fall 2016 0.1 documentation

Index

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

search.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

_static/up.png

week7_old.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Day 7: More Functions and Intro to Minecraft

Take Home Work

Today, we covered functions that return arguments and classes. We briefly looked at vectors in Minecraft as well.

So, your take home work is the following:

		
		Think about your project. Come to class with the following:

		
		Your goal

		A brief initial plan

		Any difficulties you think will happen

		Your predictions for how far you think you will get

		
		Continue to work on the class you started

		
		Get at least 5 functions working for your class

		At least one should take an argument

		At least one should return a value

		REMEMBER: while inside a class function, it can only see self and the arguments passed to it!

		
		Rewrite one of your previous designs with functions.

		
		This could mean putting the ENTIRE thing into a function

		It could mean taking a part of your design and turning it into a function then using that function

4. Optional: Incorporate more random choice into your turtle designs

import random
anumber = random.randint(0,10)
somechoice = random.choice(['red', 'white', 'blue'])

Review

Below is review information for Minecraft, Functions that return results, and classes.

If you are looking to install the minecraft libraries, check here: Installing Minecraft

Minecraft Overview

Primarily, you can do the following things with the library

		Move the player

		Get the player’s location

		Set blocks

		Get block information

There are many things you can do with this.

Resources and Links

		A list of the commands you can do with mcpi [http://www.stuffaboutcode.com/p/minecraft-api-reference.html]

		The Learn to program with Minecraft book [https://www.nostarch.com/programwithminecraft]

Functions with Return Statements

Last week, we only talked about functions that take input arguments and print things. But what if we wanted to write a function that returns a value you can put in a variable?

The answer is a return statement. At the end of a function, use a return statement to have the function spit out a particular value. Then, when you call that function, you can put the returned value in some variable.

Here’s an example:

def addition_func(x, y):
 result = x + y
 return result

Then, if you want to call this function, you can do this:

the_sum = addition_func(10, 15)

We call the function, and put the return value into the the_sum variable.

Python Classes

Finally, we learned the basics of defining and using our own custom-made object classes. The basic idea behind defining a class is that you’re writing a recipe for a particular type of object. you can think of it like this: if you have a room full of chairs, each of those chairs is a chair object, but “chair” would be the name of the class.

After you’ve defined a class (written your recipe), you can use it to make copies of your custom-made object in code. The Lecture Slides have example code in case you forget!

See the “Extra Resources” section for examples. In short, the proper syntax is this:

class <Class_Name>:
 property_a = value_a
 property_b = value_b
 property_c = value_c

 def some_class_function(self)
 <code>
 <code>
 <code>

Remember, classes have two very important features in Python: properties, which are details about the object that describe it, and functions, which are things that the object can do.

For example, a Dog object in Python might have the properties name, age, height, etc., and functions like run(self), bark(self), and fetch(self). Remember that when you’re defining functions inside an object, you need to make the first argument (the first thing in the parentheses) the keyword self, which tells Python, “this function belongs to this object type.”

Similarly, inside of a class’s function, if you want to reference one of that class’s properties, you also need to use the self keyword. So, in the bark(self) function for a dog, if you wanted to print its name, it would look like this:

def bark(self)
 print("Hello! My name is " + self.name)

Don’t forget the self keyword!

Lecture Slides

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down-pressed.png

challenges/turtle_coordinate_challenge.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Turtle Challenge: Specific Coordinates

Turtles are awesome because we can make them do many things.
Let’s create the turtle first:

		1
2
3

		 import turtle
 bob = turtle.Turtle()
 bob.speed('fastest')

Now, in the following, we can make the turtle go to very specific coordinates:

		1

		 bob.setpos(100,0)

Bob is now at x=100 and y=0.
In general, the syntax is setpos(x_coord,y_coord).

We can use this to make interesting things.
For example, if I want to make bob do a triangle without a for loop:

		1
2
3
4

		 bob.setpos(-100, 0)
 bob.setpos(0,100)
 bob.setpos(100,0)
 bob.setpos(-100, 0)

What’s even cooler is that we can use variables to make this scalable:

		1
2
3
4
5

		 tri_size = 30
 bob.setpos(-1*tri_size, 0)
 bob.setpos(0, 1*tri_size)
 bob.setpos(1*tri_size, 0)
 bob.setpos(-1*tri_size, 0)

But this is a lot of code for something simple.
What if we could store all of the coordinates ahead of time and then
use a for loop to loop over the coordinates?

		1
2
3
4
5
6

		 tri_size = 130
 coords = [[-1, 0], [0, 1], [1, 0], [-1, 0]]
 for coord in coords:
 x = coord[0]
 y = coord[1]
 bob.setpos(x*tri_size, y*tri_size)

This triangle looks a little funny.
What if we wanted to have each side be the same length AND use the coords list?
What numbers would we have to change?

The Challenge

Use a coordinate list like the one above to make your initials (first and last).

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

_static/plus.png

day9.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Day 9: Working on Projects

Tutorial Pages

(same as before, just reposted on this page too)

		tutorials/turtle_artist

		tutorials/chatbot

		tutorials/minecraft_architect

		tutorials/data_analysis

Example Slides

Review

No review today. See tutorials for project-specific information.

Slides

No slides today

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

week10.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Week 10: Goodbye World

Summary

To come after the lesson!

Preview: Final class!

Extra Resources

To come after the lesson!

Lecture Slides

To come after the lesson!

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

tutorials/f16_animation.1.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Animation

The tools we are going to use for animation are going to be PyGame and Python.
There is information on how to install pygame linked here.

PyGame

PyGame provides you with a couple core things:

		A way to interact with a canvas

		A set of ways to draw shapes and images to the canvas

		A procedure for repeating the code and updating the screen to make things animated

There are a couple initial things for pygame.

I have outlined the basic code here:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

		import pygame

INIT SECTION
Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)

size = (700, 500)
done = False

pygame.init()

screen = pygame.display.set_mode(size)
clock = pygame.time.Clock()

pygame.display.set_caption("My Animation")

This is the header code for pygame. It does the following things:

		Imports the pygame library

		Defines some basic colors. These are in the RGB format in tuples.

		Define the size of the screen as a tuple.

		Create a boolean variable to represent whether the animation is done yet.

		pygame.init() starts the pygame engine.

		
		After the engine is started, you can set the screen size and get the clock.

		
		the clock is useful for setting and changing the frames per second.

		You can also optionall set the title of the screen

With this part, you are not quite done. You now need to have the game loop!

Game Loop

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

		# -------- Main Program Loop -----------
while not done:
 #### EVENT CHECK SECTION
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 done = True

 #### CLEAR THE SCREEN
 screen.fill(WHITE)

 #### DRAWING SECTION

 # empty

 #### TELL THE SCREEN TO UPDATE
 pygame.display.flip()

 #### TELL THE CLOCK YOU WANT 60 FRAMES PER SECOND
 clock.tick(60)

Close the window and quit.
pygame.quit()

You should combine this code with the code from the last second.
When run together, it should open a blank white screen.
Let me know if it doesn’t, because then there is something wrong.

Drawing Objects

Pygame has several different objects it can draw.
There is a specific format to them.
There are complete docs at the pygame docs [https://www.pygame.org/docs/ref/draw.html], but I will
describe a couple things here.

The screen object created in the initial section is very important.
It is used to reference the screen for drawing!
Inside the drawing section in the while loop, add the following:

		1

		pygame.draw.rect(screen, BLACK, (0, 0, 100, 100))

This code does the following:

		It uses the pygame.draw.rect function draw a rectangle

		It uses the screen object to draw to the screen

		It uses the BLACK color to pick the rectangle’s color

		
		It uses a 4-length tuple (0,0,100,100) to define the shape of the rectangle.

		
		The format of this tuple is: (left_x, top_y, width, height)

The pygame website describes this code as: rect(Surface, color, Rect, width=0) -> Rect.
This means that the rect(...) function takes as input the Surface, which we call screen,
a color, a capital-R Rect, and optionally the width. The arrow means it returns back a
capital-R Rect.

The capital-R Rect is a specific PyGame variable type. I will show
how to use that in the next section. But, you can also just use tuples in this case.
We also aren’t saving the Rect that it produces.

Explore the code on the pygame docs. Explore the different shapes.
To list them here:

rect(Surface, color, Rect, width=0) -> Rect
polygon(Surface, color, pointlist, width=0) -> Rect
circle(Surface, color, pos, radius, width=0) -> Rect
ellipse(Surface, color, Rect, width=0) -> Rect
arc(Surface, color, Rect, start_angle, stop_angle, width=1) -> Rect
line(Surface, color, start_pos, end_pos, width=1) -> Rect
lines(Surface, color, closed, pointlist, width=1) -> Rect

We are not importing the functions completely, so we are calling them as
pygame.draw.* where the * is polygon, circle, rect, etc.

Keeping track of state

The structure of the pygame code is:

create variables and initialize them

start loop
 draw and update things inside the loop
 the loop ends when the animation ends

close the window

In order to keep track of the state of things, you have to create variables
to represent the state in the first part.

An easy way to play with this is to create x and y variables and
set them to some number like 0

x = 0
y = 0

then use them to draw the object inside the loop.

inside the loop
pygame.draw.rect(surface, BLACK, (x, y, 100, 100))

Finally, you can then change the x and y inside the loop!

x += 1
y += 1

Now, the object will move!

The core elements of the game loop

The game loop follows this pattern:

		Handle Events

		Update states

		Draw everything

Where you should go from here

Your goal now is to make an animation. You can continue to use variables like above
and use functions to modify those variables. You can also use classes,
which are described elsewhere and in the cookbooks linked below.

You should work on doing the following:

		Putting the game loop inside a function or inside a class

		Put the event handling, state updating, and drawing inside functions or classes.

You should also answer the following questions:

		What is the overall goal of your animation?

		What are the pieces of your animation?

		How do those pieces change over time?

		What variables do you need to represent those changes?

		What python syntax is really useful for all of these things?

There are a couple of cookbooks which you can use:

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

_static/comment.png

exercises/week5ish_dictionaries.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Dictionary Exercises

Dictionaries are much like lists. They store collections.
However, you can only index into them. This is because they are mapping types.
They let you map from keys to values.

		1
2
3
4
5
6
7

		# two ways to create
euclid = {}
euclid = dict()

euclid['name'] = "Euclid"
euclid['age'] = 2
euclid['species'] = "Bunny"

Using the example above, create a dictionary for a pet or a family member.
The “keys” can be whatever you want. The keys I used were ‘name’, ‘age’, and ‘species’.

You can then print out the information:

		1

		print("Euclid's age is {}".format(euclid['age']))

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

exercises/week6_function4.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Week 6: Functions Part 4

You can use functions with turtles in really fun ways!

Make Turtle Function

Our first turtle function will make a new turtle for us, and do all of the
property changes that we want!

It should output the turtle. It can take inputs if you’d like (maybe for color, size, etc)

		1
2
3
4
5
6
7
8

		def make_turtle():
 out_turtle = turtle.Turtle()
 ### CODE HERE
 ### modify properties like color, speed

 ### return the turtle back

bob = make_turtle()

Turtle Spiral Function

Our second turtle function will make a spiral using a for loop!

		Input: It should take as input turt, which is the turtle that will do the loop.

		Input: It should take as input num_times: and that should be used for how many times

the for loop will run.
- Input: It should take as input angle: and that should be used for what angle the
turtle will turn.
- Bonus: make these num_times and angle arguments be keyword arguments!
- Output: The function should return nothing!

		1
2

		def spiral(turt, ______):
 ### your code goes here

Turtle Polygon Function

This turtle function should make a polygon using a for loop!

		Input: It should take as input turt

		Input: Take as input the num_sides so that you can make any sided polygon

		Output: The function should return nothing

important: the angle that a turtle must turn for a polygon is 360/num_sides.

		1
2

		def polygon(turt, ________):
 ### fill in the code here

Bonus: Turtles with Keyboard part 1

Now we will use functions to add interaction to our turtles!

I have written the first function below to make the turtle go up.
You should write the rest for left, right, and down.

Vocabulary: this is called ‘binding’ the key to a function

		1
2
3
4
5
6
7
8
9

		screen = turtle.screen()

bob = make_turtle()

def move_bob():
 bob.forward(100)

screen.onkey(move_bob, "space")
screen.listen()

Bonus: Turtles with Keyboard part 2

Now that you can control your turtle, you should given it some extra skills!

Finishing writing the function below. It will make it so that when you press “s”, the
turn will do the spiral function you wrote above!

Vocabulary: This is binding the key ‘s’ to a function

After that, write some other functions that make the turtle do things. Some ideas:

		Increase the turtle’s size

		Decrease the turtle’s size

		Make the turtle stamp

		Make the turtle draw a circle, square, polygon, etc

		1

		

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

tutorials/s16_minecraft_architect.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Minecraft Architect Tutorial

The goal of this tutorial is walk you through how to be a minecraft architect.

The first steps are going to be:

		Get the correct setup going (see Installing Minecraft)

		Start interacting with the world

This tutorial will cover a few of the basic information and then some techniques for building things in minecraft.

To start:

		Start the minecraft server

		Log into the minecraft client (make sure you set the version under the profile settings to 1.9.2!)

		connect to a world at the address localhost or 127.0.0.1

4. Open up an iPython terminal to test the connection and type in

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.postToChat("hello world!")

5. From now on, you should use a file and do the first following lines so that you have access to the mc object and the Vec3 class.

from mcpi.minecraft import Minecraft
from mcpi.vec3 import Vec3
mc = Minecraft.create()

Information: User-Centric Positioning

The first thing you should think about is that everything you do is based around the user.
The user is located at a specific place in the world, which are the set of (x,y,z) coordinates.
So, when you construct anything, you are constructing relative to them.

You get the positions by:

pos = mc.player.getPos()
to see what this looks like, you can do
print(pos, type(pos))
you can also get the x,y,z individually:
print(pos.x, type(pos.x))
print(pos.y, type(pos.y))
print(pos.z, type(pos.z))

It is best to draw things out on paper and plan them.
For instance, if you want to make a wall next to the user, you should figure out what the adjustments to the x and z would be.
One spot away from the user would be pos.x-1 or pos.z-1

Information: Placing Blocks

You can place either a single block or multiple blocks of the same type.

Single Blocks

For a single block, you either specify a Vec3 object, or the 3 coordinates.
You also specify the block number. You will have a book looking these up.

pos = mc.player.getPos()
set by the Vec3
mc.setBlock(pos, 42)
set by each spot individually
mc.setBlock(pos.x, pos.y, pos.z, 42)

but probably set in front of user, not where they are
mc.setBlock(pos.x+1, pos.y, pos.z+1, 42)

Vectors can add, so instead of typing out the 1 away with each spot individually, you can do

pos = mc.player.getPos()
offset = Vec3(1,0,1)
new_pos = pos + offset
mc.setBlock(new_pos, 42)
you could have also done:
mc.setBlock(pos + offset, 42)
or even
mc.setBlock(pos + Vec3(1,0,1), 42)

Multiple Blocks

For multiple blocks, you are specifying a cube. For this, you have to give the two corners of the cube.
For example, you could do:

mc.setBlocks(0,0,0, 3, 3, 3, 42)

This would create a 3 by 3 by 3 cube. Note, because I didn’t use relative coordinates, you won’t be able to find this cube.
To make it relative to the player:

pos = mc.player.getPos()
mc.setBlocks(pos.x, pos.y, pos.z, pos.x+3, pos.y+3, pos.z+3, 42)
or more easily:
mc.setBlocks(pos, pos+Vec3(3,3,3), 42)

Let’s make a giant box around the player. You will probably have to break your way out.

pos = mc.player.getPos()
mc.setBlocks(pos-Vec3(5,5,5), pos+Vec3(5,5,5), 42)

Technique: Layers

When you’re placing blocks, if you want to have a unique shape, you can play the blocks in layers.
Imagine building a pirate ship, for example. Each layer starting from the bottom would get longer and longer and slightly wider.
This would create a oval-type shape that ships have on their bottom.

You could do the layer technique for faces, buildings, triangles, etc.

Technique: Negative Space

One thing you can do is think about building things with negative space.

For example, let’s say I wanted to build a box around the player, but I didn’t want them to suffocate.
Well, you could create the cube first, and then replace the inner part of the cube with a smaller cube of air.

pos = mc.player.getPos()
cube_size = Vec(5,5,5)
air_size = Vec(4,4,4)
mc.setBlocks(pos-cube_size, pos+cube_size, 42)
mc.setBlcoks(pos-air_size, pos+air_size, 0)

Technique: Block Collections

Another thing you can do is create collections of blocks using lists and then
have a function which can iterate over them and place them one at a time.

def set_points(points, mc, block_type):
 for point in points:
 mc.setBlock(point, block_type)

example usage
pos = mc.player.getPos()
points = list()
for i in range(10):
 points.append(pos+Vec3(-1*(i%5), i%5, i%5))
set_points(points, mc, 42)

You could also do a block collection that uses sin or cos to create a circle. I will explicitly give this one to you.
Here I am using a set because it enforces uniqueness. No point can exist twice.

def taxicab_circle_x(r):
 point_set = set()
 x = 0
 for angle in range(360):
 theta = math.radians(angle)
 y = math.floor(r*math.sin(theta))
 z = math.floor(r*math.cos(theta))
 point_set.add(Vec3(x, y, z))
 return point_set

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

exercises/week4_takehome.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Homework for Week 4

Exercises

Modulo Practice

Modulo tells you the remainder from a division.
The best way to think about this is to think about how many units are left until the next multiple.

For example, imagine you have a chicken that lays eggs.
You have a computerized chicken hutch, so you know her total count of eggs.
You want to only go in and get eggs when she has laid 12 of them.
But you’ve had the chicken for so long, the total count is really high.
One way of knowing how many are left until 12 is using modulo.
Using modulo like this: total_count % 12 will be 0 when the total_count is a multiple of 12.

So, whatever modulo we are doing (12 in the egg example) lets us count to that number over and over!

Another example is music. If you want to count the beats in 4s and you know the total beats so far,
you could just do modulo to find out which beat you are on, like this: beats % 4.

Finally, the last example of using modulo is with the chinese horoscope!
With the horoscope, there are 12 animals. Each year is assigned an animal and every 12 years,
the sequence of animals starts over!

Your task

Write your own horoscope. It would be twelve animals or it could be three.
Using input, ask the user how old they are
(remember to convert the input to an integer or float!).

Depending on their age, use modulo to find their horoscope!
You should use if and elif statements.
Remember that if you modulo by 3, then the result can only be 0, 1, or 2.
If you modulo by 5, the result can only be 0, 1, 2, 3, or 4.

bonus

You could store horoscope messages in a list:

		1
2
3
4
5
6
7

		fruit_horoscopes = list()

banana_horoscope = "You are a banana!"
fruit_horoscopes.append(banana_horoscope)

apple_horoscope = "You are an apple!"
fruit_horoscopes.append(apple_horoscope)

And then you can use the modulo result to index into the list!
This replaces the if statements.

Extra Things

Gifs with Turtles

Using the gifs with turtles requires that you have a gif file in the same folder as your python file.
If you started a project in pycharm, it should have made you select a folder, and therefore you know where your python file is at.

		One way to find good gifs is use to google’s advanced image search [https://www.google.com/advanced_image_search?hl=en&fg=1].

		
		There is a “file type” option. Use it to select gif.

		I would recommend also selecting “icon” under “image size” as well. Then, search for whatever you want!

I searched for robots and I found the one below. Note that for animated gifs, the animation won’t be shown! Only the first frame.

[image: ../_images/robot.gif]
Once a gif file is in the same folder as your file, you can then do:

		1
2
3
4
5
6
7

		import turtle
turtle.register_shape('robot.gif')

bob = turtle.Turtle()
bob.shape('robot.gif')

turtle.done()

For fun, you could make the pen go up and just stamp:

		1
2
3
4
5

		bob.penup()
for i in range(4):
 bob.stamp()
 bob.forward(200)
 bob.left(90)

This leads to fun things like these:

[image: ../_images/robot1.png]
[image: ../_images/robot2.png]

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

exercises/week6_function2.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Week 6: Functions Part 2

The most important information about arguments:

		Functions have a local context only!

		Sending information into a function is through arguments

		Giving a variable to a function can be described as “passing the variable in”

Functions with one arguments

		1
2
3
4
5

		# finish this code by replacing the underlined parts!
def print_this(___):
 print(____)

print_this("Hello!")

Functions with more than one argument

To accept more than one argument, we simply list the variables an use commas!

		1
2
3
4
5
6

		# finish this code by replacing the underline parts!

def print_more(__, ____)
 ## print both of the variables separately

print_more("Hello World", "It is a great day!")

		1
2
3
4
5
6

		def do_math(___, ____):
 ## write code here that adds the two variables
 ## then it prints the result

do_math(10, 20)

Practicing arguments more

Finish writing each of the following functions. You should do them one at a time
and make sure each one works before writing the next.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

		def print_n(message, n):
 # finish this part of the code
 # it should print the message n times
 # hint: use a for loop
 # ____________

print_n("Functions make life easier!", 5)

def greet(name):
 ## greet the person!

greet("Dr. Euclid Von Rabbitstein")

def compute_fizzbuzz(n):
 ## write the if statement for fizz buzz!
 ## remember: if n is a multiple of 3, print "fizz"
 ## if n is a multile of 5, print "buzz"
 ## if n is a multiple of both 3 and 5, print "fizzbuzz"
 ## if none of the above, print the number

compute_fizzbuzz(3)
compute_fizzbuzz(5)
compute_fizzbuzz(15)

def fizzbuzz_loop(n):
 ## write a for loop which goes around "n" times
 ## each time inside the for loop, call the compute_fizzbuzz(__) function

fizzbuzz_loop(100)

Keyword arguments

You can set default values for arguments.
They still act as normal arguments, if you pass in the variables in, it will accept them in order.
The difference is that you can choose not to specify some variables.

IMPORTANT: all keyword arguments come after normal arguments.

		1
2
3
4
5
6
7

		def print_n(message, n=10):
 ### use the same for loop you had above to print the message n times

print_n("[1] Functions are awesome!")
print_n("[2] Functions are awesome!", 3)
notice how i specifically specify the n in this next one
print_n("[3] Functions are awesome!", n=3)

For this next one, I have left out all parts of the argument specification.
You have to write it. I have written the code. There are two needed variables:
stop_number and multiple_number. They should both have default values.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

		def detect_multiples(____):
 for i in range(stop_number):
 if i % multiple_number == 0:
 print("{} is a multiple of {}".format(i, multiple_number))

print("\n --Test 1-- \n")
detect_multiples(100, 7)

print("\n --Test 2-- \n")
detect_multiples(stop_number=100, multiple_number=13)

print("\n --Test 3-- \n")
detect_multiples(multiple_number=9)

print("\n --Test 4-- \n")
detect_multiples(stop_number=20)

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

exercises/week6_function3.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Week 6: Functions Part 3

Functions can pass information out!

A basic example

		1
2
3
4
5

		def give_me_ten():
 return 10

x = give_me_ten()
print(x)

Now, write a basic example that returns your name:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

		def your_name():
 #____

name = your_name()
this is the function from earlier
greet(name)

as a bonus, you can also do:
greet(your_name())
this is called composition
it's taking the your_name output and making it the greet input

Using arguments and returns

		1
2
3
4
5
6
7
8

		def center(some_string):
 centered = "{:^30}".format(some_string)
 return centered

message = center("This is a nice shortcut!")
print(message)

BONUS: Compose the two operations above

Return Pig Latin

Fill out the following function so that it returns the pig latin version of a string!

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

		def piglatinify(word):
 ### save the pig latin version into a variable called new_word
 return new_word

piglatinify("Heroes")

oops, the above code doesn't save the result. how can we save it?
once saved, print it!

also, will this work?

print(word)
print(new_word)

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

exercises/week8_classes.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Class Exercises

Class basics

First class

Defining class is a recipe. Take a look at the syntax:

		1
2
3

		class Dog:
 name = 'default name'
 age = 0

The important part to notice is the class Dog:. This is what indicates the beginning of the code block.
After the class is defined, two variables are declared. These variables are inside the class. Think of them like files in a folder.

		1
2
3
4
5

		class Dog:
 name = 'default name'
 age = 0

fido = Dog()

This code instantiates the class. This means you are using the recipe to create a new object.

To repeat the vocabulary:

		instantiate: use the recipe to create an object

		object: a specific instance of a class. think of this like a cookie from a cookie recipe.

Using the first class

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

		class Dog:
 name = 'default name'
 age = 0

fido = Dog()

print("1. Fido's name: ", fido.name)
fido.name = "Fido"

print("2. Fido's name: ", fido.name)

george = Dog()
print("3. George's name: ", george.name)
print("3. Fido's name: ", fido.name)

george.name = "George"
print("4. George's name: ", george.name)
print("4. Fido's name: ", fido.name)

Run this example.

You will see that changing the internal properties of fido and george stay inside fido and george!
This is another example of scope. Just like inside functions are local scope, inside objects are local scope!

Getting access to internal variables

You can see from the last example that you access the internal variables using the dot notation.
But, what if you wanted to write a function inside the object? How can you access the variables?

Let’s try this:

		1
2
3
4
5
6
7
8
9

		class Dog:
 name = 'default name'
 age = 0

 def speak():
 print("My name is {}. Bow wow!".format(name))

fido = Dog()
fido.speak()

Do you think this will work? Nope! Scope doesn’t let us do that!

There is a second reason why the code above won’t work and that reason is also what solves things!

		1
2
3
4
5
6
7
8
9

		class Dog:
 name = 'default name'
 age = 0

 def speak(self):
 print("My name is {}. Bow wow!".format(self.name))

fido = Dog()
fido.speak()

When you use the function that is inside an object, python adds a variable without you having to do anything!
That variable is called the self variable.

Exercises

		Choose an animal and write a class for it.

		It should have at least 2 internal variables.

		It should also have 2 functions.

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

exercises/for_turtles.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Fors and Turtles!

Link to turtle cheatsheet [https://github.com/Heroes-Academy/IntroPython_Fall2016/blob/master/code/week04/Turtles%20Cheat%20Sheet.pdf]

For this exercise, you will use a single turtle in more complex situations:

		In a for loop using range

		In a for loop using range and if to change the colors

		Fizz Buzz! Read below for instructions =).

Basic turtle setup:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

		### first, import turtles
import turtle

then, create a turtle!
bob = turtle.Turtle()
bob.speed('fastest')

do stuff with the turtle
for example, a triangle!
for i in range(3):
 bob.forward(100)
 bob.left(120)

end the code with the following, so python knows to keep the window open
turtle.done()

Exercise 1

		1
2
3
4
5
6
7

		import turtle

bob = turtle.Turtle()

for i in range(500):
 bob.forward(i)
 bob.left(95)

Change the code so that each time around the for loop, the turtle draws a triangle or a square.

Exercise 2

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

		import turtle

bob = turtle.Turtle()

color1 = "#cc3333" ### you can use the internet to get more of these
color2 = "#3333cc"

for i in range(500):
 bob.forward(i)
 bob.left(95)

 if False:
 print("change colors here")

Change the code above so that the if statement will change the turtle’s color when i is even.

Exercise 3

Fizz Buzz!

Modify the code in Exercise 2 so that:

		
		when i is a multiple of 3

		
		turn the turtle color1

		make the turtle write “fizz”

		
		when i is a multiple of 5

		
		turn the turtle color2

		make the turtle write “buzz”

		
		when i is a multiple of both

		
		turn the turtle color3

		make the turtle write “fizz buzz”

		else, make the turtle black and write nothing.

Bonus Exercise 1

You can “nest” loops inside each other:

		1
2
3

		for i in range(5):
 for j in range(2):
 print(i,j)

Use a nested loop inside the turtle’s for loop to do more interesting patterns.

Exercises that use a list

Exercise 1

Lists let you store ordered sets of things. There are a couple different ways to make a list.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

		mylist = list()
mylist.append(5)
mylist.append(10)

print(mylist)
print(mylist[0])
print(mylist[1:])

mylist = [5, 10]

print(mylist)
print(mylist[0])
print(mylist[1:])

You can use lists in for loops instead of range

		1
2

		for item in mylist:
 print(item)

Do the following:
1. create a list with multiple turtles

turtle_list = [turtle.Turtle()]
turtle_list.append(turtle.Turtle())

2. use a second for loop inside the main for loop to make each turtle move

for t in turtle_list:
 # code here

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

exercises/week5_listfun.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

List Exercises

Lists are an extremely powerful way of managing multiple variables at once!

Exercise 1: Basic List

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		students = list()
students.append('John')
students.append('Jenna')
students.append('Rachael')
students.append('Isabel')

num_students = len(students)

print("There are {} students!".format(num_students))
print("The first student is {}".format(students[0]))

Modify the above code to finish printing out each student.

Exercise 2: Adding to the list

		1
2
3
4

		fav_things = list()

num_things = len(fav_things)
print("I have {} favorite things!".format(num_things))

Modify the above code by adding in your favorite things! You can change the variable name
and the print statement if you want to do movies, books, pets, etc instead of “things”.

Exercise 3: Looping over a list

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		fav_things = list()

num_things = len(fav_things)
print("I have {} favorite things!".format(num_things))

if num_things > 0:
 print(fav_things[0])

 for i in range(num_things):
 print(i)

Take a look at the above code. Indexing into fav_things allows me to print the first item.
The for loop allows me to loop over the exact integers that can index into fav_things.

Modify the code so that fav_things is being indexed inside the loop and printed out.

Exercise 3 part 2

You can also use a for loop to loop over each of the things.

		1
2
3

		test = ['this', 'is', 'cool']
for item in test:
 print(item)

Use this style of loop to print out your favorite things.

Exercise 4: Looping with While

A while loop will keep doing things until you tell it to stop!

		1
2
3
4
5
6
7
8
9

		done = False

while not done:
 print("Inside my loop!")
 print("Exit?")
 choice = input("[yes/no] > ")

 if choice == "yes":
 done = True

Make a while loop which let’s you exit as the previous code.
But inside the loop, ask for the user for their favorite things.
Then, add these favorite things to a list!

This is basically the same code as before, you are just using append to add new things.
The only difference is now it is inside the while.

After the while loop finishes, use a for loop to
print the list!

Exercise 5: Higher or Lower

Play the guessing game using a while loop.

		The computer selects a number

		The user has to guess until they are right

		The computer tells the user higher or lower

		The computer counts how many guesses it took

To guess a random number, you can use the random package

At the top of your code, put:

		1

		import random

Then, when you want to select the number, do:

		1
2
3

		low = 0
high = 100
correct_number = random.randint(low, high)

Now, the game should look like the following (you have to write the rest of the code):

		1
2
3
4
5
6
7
8

		low = 0
high = 100
correct_number = random.randint(low, high)

guess = -1

while guess != correct_number:
 print("Fill out the code here!")

Important: Do not run the code above without editing it!
You will enter into an infite loop.
If you do end up doing this, either “Ctrl-C” or the red stop button will stop it.

Bonus Exercise

Generate random sentences. An example of how to generate adjective-nouns is below!

You can play with generating different “patterns” of sentences:

		
		You are a ADJECTIVE NOUN.

		
		this is the example below

		
		NOUN tried to VERB.

		
		Euclid tried to sleep.

		
		NOUN is ADJECTIVE.

		
		Cheese is stinky.

How complex can you make it?

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

		 import random
 adjectives = ["super", "silly", "evil", "furry"]
 nouns = ["rabbit", "tortiose", "gorilla"]
 keep_going = True
 while keep_going:
 pick1 = random.choice(adjectives)
 pick2 = random.choice(nouns)
 print("you are a {} {}".format(pick1, pick2))
 answer = input("Keep going? (yes/no) ")
 keep_going = answer == "yes"
 # alternate version:
 # keep_going = (input("Keep going? (yes/no) ") == "yes")
 # alternate version:
 # if answer == "yes":
 # keep_going = True
 # else:
 # keep_going = False
 # why is the way I did it a good way to do it?
 print("goodbye!")

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

refreshers/week5_refresher.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Week 5 Refresher

Refresher 1

Write down the variable type for all of the “x” variables.
If it requires a calculation, write down the answer as well.
Verify your answers using python.
Remember that you can use “type(x)” in the iPython shell to figure out the variable type.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

		x = 10
x = 5.2
x = "5.5"
x = False
x = 10 / 2
x = 10 % 3
x = 5 + 4 % 3
x = (5 + 4) % 3
x = 10 < 38
x = 10 == 10
x = 57 % 2 == 0

y = 30
if y % 3 == 0:
 x = y // 3
else:
 x = y + 1

Refresher 2

		Finish the following code so that it tests for X being a modulo 2, 3, 4, 5, and 6.

		
		be careful with the ordering of the tests

		there should only be ONE if statement. The rest should be elif

		1
2
3
4

		x = input("Give me any whole number: ")

if x % 2 == 0:
 print("X is a multiple of 2!")

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

exercises/week6_function1.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Week 6: Functions Part 1

For all of the following code, run it yourself in pycharm.

Simplest Function

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		### the function definition
def hello_world():
 ### the function code block
 ### notice the indents
 print("Hello function world!")

notice this is not indented
this is how you run the function
also called the function call or function execution
hello_world()

Simplest Function Twice

Using the function above, write the code that is required to make it happen three times.

For Loop inside a Function

Using a for loop and the range function, write the following function
so that it prints the numbers up to 10

		1
2
3
4
5

		def print_numbers():
 ### put the for loop here!

print_numbers()

Calling other functions

Functions can even call each other. There are several functions below.
The first function should print out a single line. You have to fill in the blank.
It can be any message you want.

The second function should call the other function three times. You should not use
a loop or anything like that.

The final function should use a for loop to call the other function.

NOTE: the code belo will not work yet because the second two functions aren’t finished!

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

		### the first function
def print_message():
 # fill in the blank
 print("___________")

the second function
def print_three():
 ## call the other function three times here

the third function
def print_many():
 ## call the first function inside a for loop

these call the functions above

function 1
print("PRINT MESSAGE FUNCTION")
print_message()

function 2
print("PRINT THREE FUNCTION")
print_three()

function 3
print("PRINT MANY FUNCTION")
print_many()

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

refreshers/week4_refresher.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Week 4 Refresher

Let’s refresh your memory!
First, read the reminders about syntax.
Then, complete the exercises!

Reminders

Basic Variables and Operations

There are four basic variable types

		1
2
3
4

		x = 5 # int
x = 5.0 # float
x = "5" # str
x = True # bool

You can convert between types

		1
2
3
4

		y = "5" # a string variable
x = int(y) # convert to integer
x = float(y) # convert to float
z = str(x) # convert the float to string. does this equal "5" or "5.0"

There are 7 math operator types

		1
2
3
4
5
6
7
8
9

		x = 10
y = 2
x + y
x - y
x * y
x / y
x // y
x ** y
x % y

There are shortcuts for math operators. The following pairs of statements have the same result.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

		x = 5
y = 3
x = x + y
x += y

x = 5
y = 3
x = x - y
x -= y

x = 5
y = 3
x = x * y
x *= y

x = 5
y = 3
x = x / y
x /= y

x = 5
y = 3
x = x // y
x //= y

x = 5
y = 3
x = x ** y
x **= y

x = 5
y = 3
x = x % y
x %= y

Booleans and Comparisons

There are boolean variables

		1
2

		x = True
x = False

Variables can be compared to create boolean variables

		1
2
3
4
5
6
7
8

		x = 42
y = 41
x == y
x != y
x > y
x >= y
x < y
x <= y

Boolean variables can be combined using the special boolean keywords

		1
2
3
4
5
6

		x = True
y = False
z1 = x and y
z2 = x or y
z3 = (x and y) or (not x and not y)
z4 = (not x and y) or (x and not y)

Code blocks let you group code. In python, they are created with 4 spaces.
In pycharm and most python editors, hitting tab will just add 4 spaces.
if statements use code blocks.

		1
2
3
4

		x = 10
y = 9
if x > y:
 print("X is bigger!")

if statements can be expanded using elif.
elif will only be used if the first if is false.
(hidden question: What needs to be put into the placeholder to make the above code work?)

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		x = "3"
placeholder
if x == 1:
 print("x is 1")
elif x == 2:
 print("x is 2")
elif x == 3:
 print("x is 3")
else:
 print("I'm not sure what x is")

Getting Input from Users

You can use the input to get information from the user.
Try the following. What is missing?

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

		print("My Menu: ")
print("\t 1. Option 1")
print("\t 2. Option 2")
print("\t 3. Option 3")
x = input("What option do you choose?")
placeholder
if x == 1:
 print("x is 1")
elif x == 2:
 print("x is 2")
elif x == 3:
 print("x is 3")
else:
 print("I'm not sure what x is")

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

_images/robot1.png
B -0
B -0

refreshers/week7_refresher.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Week 7 Refresher

This week you will only have one problem to solve for the refresher.
Use the cookbook to help you solve it.
I have given you little code here so that you can connect the way I describe code to the code itself better.

Nested for loops

Sometimes in Computer Science, having loops that are inside other loops are really useful.
When this happens, we can refer to the loops as layers. Think of it like an onion.

Requirements:

		
		Write two for loops, one inside the other.

		
		The outer for loop should start at 1 and go to 20.

		The inner for loop should start at 1 and go to 10.

		Before both for loops, create an empty list.

		
		Inside the inner for loop, multiply the two loop variables.

		
		if you aren’t sure what I mean by “loop variable”, check the cookbook.

		
		Check if the resulting number is inside the list yet.

		
		If you aren’t sure what I mean by “is inside”, check the list part of the cookbook

		If the result is not in the list, then add it to the list.

		After both loops are finished, print out the length of the list.

Things to observe:

		What happens if you change the sizes of the loops? For instance, if you make the 20 number into 200? Do you notice anything about the speed of the code?

		I have written about set`s in the cookbook. Use a :code:`set instead of a list. Is it faster?

		Count how much faster it is. Do this using the time module. This is also in the cookbook.

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

refreshers/week6_refresher.html

 Navigation

 		
 index

 		Intro to Python; Fall 2016 0.1 documentation »

Week 6 Refresher

Refresher 1

Write down the variable type for all of the “x” variables.
If it requires a calculation, write down the answer as well.
Verify your answers using python.
Remember that you can use “type(x)” in the iPython shell to figure out the variable type.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		x = int('42')
x = '5.2'
x = str(5.5)
x = False or True
x = 6 / 2
x = (2*5) % 3
x = 3500 // 60
x = 3500 % 60
x = (100 % 2 == 0 and 66 % 6 == 0)
x = 10 != 10

Refresher 2

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

		response = ""
groceries = []

TASK: fill in the blank so that the while loop does not exit
until the variable response is equal "quit"
while _____:

 print("Awesome Refresher Menu.")
 print("=======================")
 print(" [1] Print grocery list")
 print(" [2] Add new grocery item")
 print(" [3] Remove a grocery item")
 print(" [4] Delete the list and start again")

 ### TASK: fill in the blank to tell the user what they should type
 ### and how they can exit
 response = input("____")

 if response == "1":
 ### TASK: replace this with the following things:
 ### 1. An if statement that checks the length of the variable "groceries"
 ### 2. If it is larger than 0, use a for loop to print out the items
 ### 3. If it isn't, print that the grocery list is empty
 print(groceries)

 elif response == "2":
 new_item = input("Ok, what do you want to add? >> ")
 ### TASK: "append" the new item to the grocery list here

 elif response == "3":
 ## TASK: fill in the blank to ask for the item to delete
 deleting_item = input("_____")

 ### now we see if the item is even in the grocery list
 if deleting_item in groceries:
 ## TASK: put a success message here
 print("_____")
 ## we will delete by finding the index and deleting that
 index = groceries.index(deleting_item)
 del groceries[index]

 elif response == "4":
 print("Grocery list is reset!")
